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Abstract 

A rotor with internal damping is a complex dynamic system. An accurate model is 
required to design and test controllers for supercritical operation. This thesis developed 
and validated a model for this purpose. 

An existing rotordynamic Finite Element Method (FEM) model and magnetic 
bearing simulation, developed by Draper Laboratory, were first compared to actual rotor 
test data. Correlation of predicted and actual parameters such as critical speeds, rigid 
body modes, and rotor displacements was used to validate the Draper model and 
simulation. Once this correlation was established, both the model and simulation were 
modified to include the destabilizing effects of internal damping. Using these improved 
predictive tools, several Proportional Integral and Derivative (PID) controllers were 
designed and implemented in an effort to stabilize a rotor system with internal damping. 
The PID controllers were effective in stabilizing the rotor systems at sub-critical speeds. 
However, the model developed during this thesis showed that these controllers were 
unable to counteract the destabilizing effects of internal damping during supercritical 
operation. This improved rotordynamic model and magnetic bearing simulation is now 
available to test more complex controller designs in the supercritical regime. 
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by ft 
(j) - Angular shaft displacement around x-axis (hysteretic) 
r| - Loss factor 
[rj] - Internal damping matrix 
rjeff - Effective loss factor 
TlH-struct - Structural hysteretic loss factor 
T|H - Internal hysteretic damping coefficient 
t|v - Internal viscous damping coefficient 
(p - Phase angle 
[O] - Modal matrix 
[O] - Normalized modal matrix 

[O] - Shear deformation 
r - Rotation around y-axis 
K - cross sectional shape factor for shear deformation of a shaft 
A - Translational shape functions for Timoshenko rotor element 
X - Whirl orbit grow/decay 
(I - Viscosity 
(0,, - Viscosity, internal damping 
(j,e - Viscosity, external damping 
0 - Angle between shaft whirl and shaft rotation, internal viscous damping 
9 - Angular shaft displacement around y-axis (hysteretic) 
0 - Rotational shape functions for Timoshenko rotor element 
p - Density 
a - Stress 
a - Stress (complex quantity) 
a - Stress under sinusoidal motion 
X - Shear stress 
CO - Whirl speed 
0>d - Frequency of damped vibration 
C0n - Natural frequency 
[co2] - Diagonal matrix, squared eigenvalues 
Q, - Rotor spin speed 
Qcr - Critical Speed 
Qth - Instability Threshold 
{^} - Modal coordinates 
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Chapter 1 Introduction 

1.1 Background 

The rotors in many commercial and military rotating machines operate above the 

first, second and even third critical speeds, [1]. Substantial weight and performance 

advantages are afforded to those machines that can run at these high speeds, [2]. But as 

the speed increases, eventually the rotor will become unstable. 

A primary destabilizing mechanism for these high-speed rotors is the presence of 

internal damping. This type of damping, due to strain of the shaft material or to micro- 

movements at shrink fits and/or couplings, can under certain circumstances, feed energy 

into the shaft vibration and thereby induce instability, [2]. 

Recently, magnetic bearings have emerged as a possible solution to the 

destabilizing effects of internal damping. The basic advantage of magnetic bearings over 

standard bearings is that the stiffness and damping of the magnetic bearings can be varied 

as a function of spin speed or other conditions of the rotating system. This advantage has 

already been exploited by the development of closed loop controllers that increase the 

damping of the magnetic bearings as the rotor passes through a critical speed, and then 

decrease the damping after critical speed passage. 

Furthermore, as the spin speed approaches an instability threshold, it should be 

possible to develop a controller to increase the external damping of the magnetic bearings 

(or make other modifications) to counteract the destabilizing effects of the rotor's internal 

damping. This increased external damping (or other factors) should be able to delay the 
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onset of instability and allow the rotor to be run at even higher speeds. This thesis will 

clarify the concepts of internal damping; validate an existing FEM rotor model and 

magnetic bearing simulation by comparing predictions to actual rotor test data; 

incorporate internal damping into the rotor model and simulation; and it will test a basic 

PID controller to determine if it is sufficient to counteract the effect of internal damping. 

1.2 Thesis Motivation 

In line with its work on Robust Control Schemes for Magnetic Bearings, The 

Charles Stark Draper Laboratory has developed a rotordynamic finite element model 

(Antkowiak) that can successfully predict critical speeds. In addition, the program also 

produces a state space model of the rotordynamic system for use in a magnetic bearing 

simulation (Schölten). Although the model and simulation were highly detailed, they did 

not incorporate any destabilizing effects. By adding internal damping to this FEM 

model, the instability threshold of the system can be predicted, yielding a more accurate 

state space model for supercritical operation.   In addition, this model could now be 

placed in a magnetic bearing simulation so that different controllers could be designed 

and tested to achieve improved control and possibly increase the instability threshold, 

thus allowing the rotor to run at higher speeds. 

In addition to the control-based goals mentioned above, the implementation of 

state-of-the-art technology into current Draper Laboratory projects is an equally 

important goal of this thesis. The most appropriate project for the magnetic bearing and 

control technology is the Draper Laboratory Flywheel Energy Storage effort. This 
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Internal Research and Development project is devoted to demonstrating the first flywheel 

energy storage system capable for use in space. This thesis is aimed at contributing a 

high fidelity model and improved simulation to assist in the testing of various controller 

schemes that could allow the flywheel to operate at higher speeds; thus allowing the 

storage of more energy. The ability to predict unstable rotordynamic behavior and give a 

certain, limited amount of control to counteract these effects can also benefit many other 

ongoing and future projects in the Laboratory. 

1.3 Thesis Outline 

This chapter briefly discusses some of the challenges in the field of rotordynamics 

and introduces the possibility of using magnetic bearings to compensate for the 

destabilizing effects of internal damping. The motivations for the thesis are then 

described and the goals are presented. A brief overview of subsequent chapters follows. 

Chapter Two discusses the concepts of external and internal damping. First, 

external damping is described, including the external viscous damping model. Internal 

damping is then defined and further divided into two distinct types: internal viscous and 

internal hysteretic damping. The models for each case are presented in detail. 

Chapter Three takes the concept of internal damping and applies it to rotating 

systems. Again the distinction between internal viscous and internal hysteretic damping 

is made. An emphasis is placed on the role of internal damping in determining the 

instability thresholds. Next, the specific effect of external damping on the instability 

threshold is addressed. 
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Chapter Four introduces the finite element method as a means to analyze complex 

rotordynamic systems. The internal damping models are defined, and the element 

matrices and the equations of motion are referenced and summarized. The model is then 

validated using a standard test case from the references. 

Chapter Five discusses the development of a detailed state space model 

(Antkowiak) and a high fidelity simulation (Schölten) that includes internal damping. 

First the method that the FEM program used to produce the state space model is outlined, 

then the full simulation configuration is presented. Finally, some details are given on the 

specific PID controller that was used in the simulation. 

Chapter Six presents the original FEM modeling and simulation predictions, for a 

rotor without internal damping, and compares them to actual rotor test data. First, the 

rotor FEM model is described for an actual rotor located at Draper Laboratory. Next, the 

model predictions for the rigid body modes and critical speeds are given. Using the state 

space model generated by the FEM program, the simulation predictions for the rigid body 

modes, critical speeds, and rotor displacements are presented. Finally, the FEM and 

simulation predictions are compared to actual rotor test results. 

Chapter Seven presents the modeling and simulation predictions for a rotor with 

various combinations of internal damping. First, instability threshold predictions from 

the FEM program are presented. Then, the full simulation results are given, and the 

effectiveness of the PID controller is discussed. 

The thesis is summarized and conclusions are drawn in Chapter Eight. 

Recommendations are made for future work at Draper Laboratory and also for the fields 

of rotordynamics and controls in general, using magnetic bearing technology. 
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Chapter 2 Damping 

When a shaft spins, it experiences a jump rope like motion called whirl or 

precession, due to slight shaft imbalance or other external forces. This whirling motion 

can put the shaft into alternating states of stress/strain. Since the shaft material is not 

perfectly elastic, work is performed on the system with every rotation. This additional 

energy added to the whirling rotor system is due to the internal damping of the shaft. As 

the speed and work done on the shaft increases, the whirl orbit of the shaft begins to 

grow. At lower speeds, the bearings of the rotating system are able to dissipate this 

energy/work by transmitting it to the ground/surroundings (external damping). However, 

as the rotation speed, energy, and shaft amplitude/orbit increase, the bearings will not be 

able to dissipate all of the energy and the shaft will become unstable. 

There are two common models of internal damping: viscous and hysteretic. 

Viscous internal damping is defined as a velocity dependent quantity that is represented 

as a dashpot with coefficient r|y This type of internal damping tends to destabilize the 

system only after the first critical speed. Hysteretic internal damping is defined as a 

displacement dependent quantity expressed by the loss factor T|H. This type of damping 

can be destabilizing at any speed (except for zero speed). 

2.1 External Damping (Viscous Model) 

Prior to elaborating on internal damping, the more familiar "external damping", or 

damping to ground, will be briefly discussed. If a system with only mass and elasticity, 
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completely isolated from its surroundings, is disturbed by a perturbation, it will begin to 

vibrate. Since the system is not connected to its surroundings, no energy can be 

transferred away from the system and it will continue to vibrate forever. Since this 

situation never occurs in nature, an energy transfer mechanism must exist between the 

system and its surroundings, [3]. In many systems, this transfer mechanism gradually 

converts vibrational energy to heat or sound. This is known as damping or external 

damping, since the energy is taken from the vibrating system and transferred to the 

"external" surroundings, [4]. 

The most widely used model for external damping is the linear viscous model. 

This model assumes that energy is removed from a system in the same manner as energy 

is removed by the use of a dashpot. A dashpot is a piston-cylinder type device filled with 

viscous oil or other fluid. As the piston is moved down into the fluid (by a force, with an 

associated energy) the fluid passes by the piston in a thin fluid layer (see Figure 1). 

According to Newton's Laws of viscous flow, the shear stress developed in the fluid 

layer between the piston and the wall of the cylinder is given by 

du    v /1N 

T=-"*=* (1) 

The shear resisting force developed along the piston is 

F=-TA = -1^V = -CV (2) 
h 

uA 
where — is defined as the viscous damping constant "c". Therefore, the Newtonian 

h 

viscous damping model predicts a linear relationship between the damping force and the 

velocity. More specifically, the damper exerts a force that is proportional to and in anti- 

phase with the velocity, [4]. 
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Figure 1: Newtonian Viscous Damping Model 

In a single degree of freedom system, the viscous external damping is represented 

by the ex term in the standard equation of motion of 

mx + cx + kx = FcosClt (3) 

By assuming the solution to be of the form x = ept, the homogeneous equation (with 

right-hand side equal to zero) can be solved to give: 

x(t) = Cle
Pi'+C2e

p*, (4) 

where *>=-*?' m 
(5) 

and where the natural frequency of the system is given by 

(6) 

The critical damping, cc, is defined as the value of the damping constant for which 

the terms under the radical in equation (5) become zero. Further, the damping ratio is 

defined as 

c=- (7) 

and the frequency of damped vibration is given by 
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wd=o)n^C (8) 

Using all of these definitions, the homogenous solution or transient solution to equation 

(3) takes the form of: 

* = c/f+^Kc/^K (9) 

If the damping ratio is less than one, underdamped oscillation occurs. This is 

characterized by oscillatory motion and by the amplitude of vibration decreasing 

exponentially with time. If the damping ratio is equal to one, the system is critically 

damped. In this case, the response of the system will be aperiodic and will quickly 

diminish to zero without oscillation. Finally, if the damping ratio is greater than one, the 

system is overdamped and the amplitude will also diminish to zero without oscillation 

(although not quite as fast as the critically damped case), [4]. 

2.2 The Linear Viscoelastic Model 

Viscoelastic materials are materials which exhibit both elastic and viscous 

behavior, [13]. A true representative of a viscoelastic material is a polymer. In this type 

of material, the atoms are joined strongly together, although the long chains can be 

branched or physically entangled (providing either a weak or strong link). While under a 

cyclic load, the elastic nature of the polymer arises from the stretching of the 

intermolecular bonds or entangled chains. In addition, the breaking and reforming of the 

intermolecular bonds contributes to the viscous nature, or damping, of the material, [5]. 

When dealing with forced (steady state) sinusoidal motions, it is convenient to 

represent the stress and strain by rotating vectors in the complex plane. Typically, these 
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vectors are called phasors. For the case of a material under a sinusoidal motion of 

frequency Q, the stress can be given as 

a = oe iOt (10) 

where o represents a complex quantity. Similarly, the strain of the material under the 

motion is given by 

e =£e iüt 
(11) 

The physical stress and strain can be found by taking the real part of the respective 

phasors: 

0(f) = Re[ö] and e(t) = Re[£]. (12) 

To show the relationship between the stress and the strain of a material under 

sinusoidal load, the two phasors are drawn on the complex plane (Figure 2). From 

observation, it is has been found that the strain lags the stress by the phase angle (p, [6]. 

Figure 2: Stress and Strain Phasor Diagram 

Plotting this relationship on the real stress-strain axes produces the classic 

hysteresis ellipse (Figure 3). The dashed line represents a system with no losses, or the 

constitutive relationship by Hooke of o = Ee . As the losses of the system increase, the 
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size of the ellipse also begins to increase. Based on the definitions of work and energy, 

the enclosed area of the ellipse is the energy dissipated per unit volume per cycle of 

oscillation, [6,7]. 

Figure 3: Stress-Strain, Energy Dissipation Ellipse for Viscoelastic Material 

The behaviors in Figures 2 and 3 can be summarized in the equation: 

°=M (13) 

where E represents a complex modulus of the form: 

E = E + iE'. (14) 

The imaginary part E' represents the loss modulus due to the material and is given by 

E' = Etm<p. (15) 

where E is the traditional Modulus of Elasticity. 

Note that this definition of the total complex modulus and the loss modulus are consistent 

with Figures 2 and 3. 

Substituting the complex modulus into Hooke's constitutive relationship and 

factoring out E gives: 

E' 
0=E(l + i—)e. 

E (16) 
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Now, defining the loss factor r| as 

E' 
7] = — = tan<p, (17) 

gives the constitutive law of a one-dimensional, linear viscoelastic material: 

o = E(l + irj)£ (18) 

This is represented by the model in Figure 4, [11,13,17]. 

-3- 
E'orn. 

Figure 4: Linear Model of Viscoelastic Material 

It is important to note that this linear model is the basis for both types of internal 

damping. The difference between viscous internal damping and hysteretic internal 

damping lies in how the loss factor term is defined. Although it is well known that linear 

models of all types have limitations (the specific limitations of linear internal damping 

were demonstrated by Graham, [8]), the overriding benefits of a linear stability 

evaluation have been recognized as a meaningful indication of the effects of internal 

damping on a rotor system, [2]. 
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2.3 The Internal Viscous Damping Model 

One of the simplest mathematical models for describing internal viscous damping 

is the Voigt Model. It takes the linear viscoelastic model (shown in Figure 4) and 

designates the damping mechanism as an idealized dashpot with a viscosity of ^i. Figure 

5 shows this standard model for viscous internal damping, [7]. 

■D- 

a 

Figure 5: Linear Internal Viscous Damping Model 

The constitutive equation for this model is given by: 

de 
ö = Ee+ßi dt ' 

or        <*,»=£«.«•+A*C§?li 
-      ^    dt 

(19) 

(20) 

If the strain derivative is evaluated and the common exponential term is eliminated, the 

equation reduces to: 

o=(E + i£ljui)£. (21) 

Now comparing the Q.[ii term to the r\ term in equation (18) gives the effective loss factor 

of 
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ET]eff=ßin or ^ =fyQ (22) 

where the x\\ represents the internal viscous damping coefficient defined as 

Vv=^- (23) 
E 

This result indicates that the effective loss factor for internal viscous damping increases 

linearly with frequency, [11,13, 17]. 

The internal damping coefficient T|v is related to the internal damping dashpot 

constant, c,, if one inserts equation (23) into the following equation derived by Gunter 

[9]: 

(> cjx* 
j) fl,I (24) 

V l J 

where ^i; is the internal viscosity and / is the length of the material. Note equation (24) is 

for a beam (shaft) only. 

To determine the energy dissipated per unit cycle, the dashpot in the viscous 

internal damping model is treated exactly the same as an external viscous dashpot. This 

yields the familiar equation of motion: 

mx + cix + kx = FcosQt (25) 

where again q is the internal damping constant. Similar to an external damper, the 

internal damper exerts a force that is proportional to and in anti-phase with the velocity. 

The mechanical impedance of equation (25) is given by: 

Zm=c,+Kma~) (26) 

and the time average power dissipated by an oscillator is given by the equation: 
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<W>=^2Re[ZJ (27) 

where the x2 term is the amplitude of the velocity phasor or fix, [5, 6]. To calculate the 

energy dissipated per cycle the following equation is used: 

D=<W>^-,[5] (28) 

The energy dissipated per cycle for the viscous damping case is then calculated to be: 

D = 7iQx2ci (29) 

Like equation (21), this also confirms that the internal viscous damping model is rate 

dependent; in particular, it is linear with frequency, [4, 6]. 

Another consequence of this rate dependence can be seen from Figure 3. Since 

the angle (p in Figure 3 is related to the loss factor, from equation (17), both depend on 

the frequency. This means that as the frequency changes, the size of the ellipse also 

changes. 

2.4 The Internal Hysteretic Damping Model 

The first researches to identify internal hysteretic damping in rotating systems 

were Newkirk and Kimball in 1924 [8, 10]. They conducted rotordynamic tests on a 

series of different materials over a frequency range of 0.03 to 50 Hz at low stress 

amplitudes. Their experiment involved connecting a weight to the "overhang" end of the 

shaft by a bearing as shown in Figure 6. This allowed the shaft to rotate freely with a 

constant downward force. Newkirk and Kimball found that as the shaft was rotated, a 
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small deflection of the weight to one side occurred no matter what rotation speed was 

used. 

After an analysis, they concluded that the angular deflection cp, shown in Figure 6, 

was cause by a force associated with the internal hysteretic damping of the material. By 

measuring this angle cp, and using it to calculate the amount of work done by the system 

to overcome the internal damping/friction, the log decrement associated with the material 

was determined. Since these initial tests, much experimental evidence has been gathered 

to confirm that internal hysteretic damping in a material is rate-independent, [7, 10]. In 

addition, it has been found that this damping force is in anti-phase with the velocity but 

proportional to the displacement, [6]. 

■ n n n n ft 

Figure 6: Kimball/Newkirk Testing Apparatus 

To find the material loss factor from the measured angle cp, Kimball and Newkirk 

used the relationships between the stress and strain derived in Section 2.2. A summary is 

shown in Figure 7. 
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-E' = Esin(p 
ß 

Re 
E = Ecos<p 

Figure 7: Stress and Strain Phasor Diagram (Modified) 

Their analysis proceeds as follows: starting from the basic sine relationship of 

E' 
sin q> = 

4(E)1 HE')2 

Factoring out E from the denominator and using equation (17) gives: 

(30) 

sin (p = 

EL 
E 1H 

*HI 'Y 
) 

i+ 
4x+riH 

(31) 

Hence if (p is measured by the apparatus of Figure 6, T|H can be solved from the quadratic 

relationship given by equation (31). Again, for these types of materials, E and r| are 

essentially constant. In contrast to the viscous model, having a constant loss factor 

dictates that the energy dissipation ellipse in Figure 3 does not change size with changing 

frequencies. It is also important to point out that the relationship between the material 

loss factor T|H and the structural loss factor (r|H-struct) depends on the geometry and 

loading of the structure. [6] 

To calculate the axial stress/strain constitutive equation for the hysteretic model 

shown in Figure 8, the components of the complex storage modulus E are used. 
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Figure 8: Linear Internal Hysteretic Damping Model 

The component along the real axis in Figure 7 (associated with Young's Modulus) is 

found using the familiar in-phase stress strain of: 

Re[o] = Ecos<pe (32) 

The component in the imaginary direction of the complex storage modulus is found from 

the quadrature stress-strain law which gives: 

Im[(?] = Esm<p— 

Together, they give 

ö = E ecQ%cp-\—sin^j 
Ab 

Recalling equation (31) and recognizing that 

1 
COS^J: 

4X + TlH 

gives the constitutive relationship 

ö = E £VH + —   '" 

which agrees with references [2, 8]. 

(33) 

(34) 

(35) 

(36) 
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Writing equation (36) in complex notation gives: 

(jeia,=E 
ee iOt 

V1 + 77* 
+ -(&**) l VH 

2    dt Q Viw 
Evaluating the derivative and canceling out the appropriate terms yields: 

G = E VH + i'      n 

^+vH
2    JI+VH 

or 

a = E- :[l+iVH]£ 

From Figure 7, it can be shown that 

E=m+(Ej =41)2+^1=E^~H 

(37) 

(38) 

(39) 

(40) 

If this substitution is made, the resulting equation 

o=E(l + i7}H)£ (41) 

is in agreement with equation (18) and the previous results given in section 2.2. 

It is important to note that unlike equation (21), the frequency, Q., no longer 

remains in equation (41) when the material has internal hysteretic damping, validating the 

experimental results obtained by Kimball and Newkirk. 

To calculate the energy dissipated per unit cycle, one must transform the variables 

from local material properties like E (Young's Modulus) to global structural properties 

like k (stiffness), to give: 

F = k(l + i7jH_slmct)x. (42) 
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In this equation the force and displacements are written as phasors while the structural 

stiffness is given by k, [6]. 

Now, if the lumped mass is included in the system, equation (42) becomes: 

F = nä + k(l + iTjH)x. (43) 

The mechanical impedance of this equation is found to be: 

kriH k A s 
Z-=   Q+'^-ö' (44> 

Using the time average power dissipation equation, equation (27), the energy dissipated 

per unit cycle for the hysteretic model is calculated to be: 

D = 7Dc2k7]H (45) 

This also confirms that the internal hysteretic damping model is independent of 

frequency, [6]. 

Although, the hysteretic damping model is typically associated with internal 

damping, occasionally, some have used this model for external damping. This external 

hysteretic damping model has the same frequency independence and energy dissipation 

characteristics as the internal model. But unlike internal damping, the external hysteretic 

damping model is always connected physically to the surrounding and always dissipates 

energy from the system, [6]. 
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2.5 Internal Viscous Damping vs. Internal Hysteretic Damping 

Once again, the difference between internal viscous damping and internal 

hysteretic damping lies in how the loss factor term is defined. For internal viscous 

damping, the riv coefficient has been identified with the damping constant in equation 

(24), and was also shown to increase linearly with frequency, [6, 7, 8]. This damping 

force associated with the ctx term is proportional to and in anti-phase with the velocity. 

For the internal hysteretic damping coefficient, T)H, experimental and analytical methods 

have been used to confirm its rate-independence, [10]. This damping force is in anti- 

phase with the velocity but proportional to the displacement. 

To get a clear graphical explanation of the differences, recall that the enclosed 

area of the hysteresis ellipse in Figure 3 is the energy dissipated per cycle. For viscous 

internal damping, the angle between the stress and strain increases as the frequency 

increases, resulting in a larger and larger ellipse. In contrast, since the hysteretic internal 

damping coefficient and the angle remain constant, the ellipse does not change size or 

orientation with changing frequency. 

To summarize the differences and to show how the models compare to some 

examples of real materials, Figure 9 and Table 1 are provided. 
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Figure 9: Variation of Energy Dissipated per Cycle with Frequency, [5] 

Table 1: Forced Excitation of a Single Degree of Freedom System with Viscous or 
Hysteretic Damping, [5] 

Viscous Damping Hysteretic Damping 
Differential Equation mx + cx + kx = FcosQt mx + Jfe(l + if]H )x = Re[Fe'"' ] 

Particular Solution F F 

^{k-mco2)2 +{ccof ^(k-meo2)2 +(k7]H)
2 

Energy dissipated/cycle D = nQx2c D = nx2krjH 

Resonant Frequency Decreases with increasing 
value of c 

Independent of value of T)H 

Static Displacement at x = 0 F 

k 

Depends on r\u 

Resonant Amplitude Depends on all equation 
parameters 

Independent of mass 

From the figure and reference [5], it is clear that most systems do not appear to have a 

substantial amount of viscous damping. Although most materials do exhibit some 

characteristics of hystereric internal damping, many experts admit that the subject matter 

is not well understood, [5,8,11].  Nevertheless, combinations and slight modifications 

of the two models appear to be useful for many applications. 
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Chapter 3 - Internal Damping in Rotors 

3.1 Rotordynamic Basics 

The simplest rotor model consists of a rigid circular disc centered on a massless 

shaft supported by rigid bearings. The rigid disc is only allowed to move in the x-y 

plane. This model, the Jeffcott or Laval rotor, is shown in Figure 11. The free vibration 

of this rotor is very similar to the two degree of freedom system in Figure 12 where the 

spring and dashpot pairs are perpendicular to one another. The equations of motion for 

any rotation speed are given by: 

mx + ex + kx = 0 

my + cy + ky = 0 
(46) 

The solution to these two equations describes the path of the shaft center and does not 

depend on the rotation speed of the shaft. In general, the natural motion of the shaft takes 

the form of an ellipse or in special cases a circle or a straight line, [12]. 

Figure 11: Jeffcott Rotor 
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Figure 12: Jeffcott Rotor, Model for Natural Vibration 

If the circular disc is not centered on the shaft, then gyroscopic forces, the 

moments of inertia of the disc, and the shaft spin speed all must be taken into account, 

[12]. A Jeffcott rotor with a non-central disc has equations of motion given by: 

mx + k22x - k23fi = 0 

my + k21 + yk23S = 0 

Id6 + Ip£lß + k23y + k33ö = 0 

iJ-ipns-k23x+k33ß = o 

(47a,b,c,d) 

where the displacements are given by x and y and the rotations are given by 8 and ß as in 

Figure 13. The diametral and polar moments of inertia are given by Id and Ip respectively 

while elements in the stiffness matrix are given by ky. The moments associated with the 

polar moment of inertia and the rotation speed in equations (47c,d) are gyroscopic 

moments. 
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Figure 13: Jeffcott Rotor, Non-Centered Disc 

By writing the equations in (47) in matrix notation, and assuming an exponential 

solution, four pairs of complex conjugate eigenvalues result in the form Sj = ±iO]j. 

These four natural frequencies result from the gyroscopic terms in equations (47) and the 

fact that the system has four degrees of freedom. A Campbell Diagram, such as Figure 

14, shows how the eigenvalues change as the shaft spin speed increases, [12]. 

Whirl 
Freq, co 

CO3 (Bwd) 
ce>2 (Fwd) 

C0i (Bwd) 

Rotor Spin Speed, Q. 

Figure 14: Campbell Diagram for Jeffcott Rotor 
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Based on the eigenvectors or mode shapes of the solution, the positive roots were 

labeled as the forward whirl frequencies, while the negative roots were labeled as the 

backward whirl frequencies. These definitions also correspond to physical observation as 

the positive roots were demonstrated by forward whirl (precession or whirl in the same 

direction of the rotation of the shaft) while the negative roots resulted in backward whirl 

(precession in the opposite direction of the rotation of the shaft), [12]. 

On Figure 14, it is important to point out two places where the rotor spin speed 

matches that of the forward natural whirling frequency of the rotor. These two locations 

are called critical speeds. A critical speed, is characterized by a large local amplitude 

vibration, similar to resonance, [9]. 

An important difference between the model with a non-central disc (or any 

shaft/rotor with gyroscopic forces) and the centered disc model is that the natural motion 

of the non-central disc is circular.   In addition, it should be noted that the Jeffcott rotor 

with the centered disc only has a single natural frequency while the models with 

gyroscopic forces have four which depend on the shaft rotation speed, [12]. 

The simple model of a rotor with a non-centered disc can be further extended to 

include many other factors. Flexible bearings with external damping, an unbalance in the 

disc, and all forms of internal damping in the shaft can also be included to improve the 

model. The discussion by Kramer in [12] is a good reference that shows the development 

of these improved models. 
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3.2 Internal Viscous Damping 

In 1933, Smith, [6], evaluated the effects of internal viscous damping on a 

rotating system. He proved that by including internal viscous damping in a rotating 

system without external damping, the system would become unstable at the first critical 

speed. This speed was called the instability threshold. He also showed that internal 

viscous damping actually has stabilizing effects if the system is kept at sub-critical 

speeds, and destabilizing effects above the critical speed. 

A few years later, the study by Smith was confirmed by a number of authors. 

These included, but were not limited to, Kramer, [12], Ehrich, [13], Gunter, [9], and 

Dimarogonas, [14]. These authors clarified Smith's claim and showed that the 

introduction of internal viscous damping caused unstable, sub-synchronous rotor motion 

above the lowest critical speed, never below. Although the methods each author used to 

calculate the actual instability threshold differed, all of the general conclusions were the 

same. In addition, they also noted that if external damping is added to the system, the 

stability threshold can be made greater than the lowest critical speed, [9]. 

A direct and simple method to achieve the same results was introduced by Ehrich, 

[13]. He first began with the constitutive relationship given by equation (19): 

ax=E£x+ßi,^ (19) 
dt 

Using the linearized beam theory or plane sections remain plane (where the strain is 

proportional to the distance from the neutral axis) yields: 

£„ =£, 
rr\ 

Kr°J 
cos0 (48) 
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where £0 is the strain at r = r0 , 6 = 0, see Figure 15. 

\ 

k      \ 
ze Xy 

<$~dA 
r\     A /ZQt\ 

/ \ 
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,/* z 
/\ ZdA -> 

Bearing Center Line 

Figure 15: Rotating, Whirling Beam Cross Section, Ehrich, [13] 

In this figure, the shaft is whirling about the bearing centerline with a speed of CO 

and spinning about the center of the shaft with speed of Q. The y-axis is an extension of 

the whirl radius R and also rotates about the bearing centerline with a speed CO. Note that 

the z-axis remains perpendicular to the y-axis and the shaft rotates about the x-axis with 

respect to the y-z plane. Looking at the angles defined by the figure, 

6=D.t-(Bt or 6=Q.-co (49) 

where 6 is the rotation rate of the shaft with respect to x, y, and z. If the motion is 

synchronous, i.e. Q. = a, then 6=0 and the shaft does not rotate with respect to the x, y, 

and z axes. Assuming sub-synchronous motion and combining equations (19), (48), and 

(49), gives 

( 
°x=£0 — [£,cos0-//,(Q-o))sin0]. (50) 

Vr» 

If this stress is multiplied by the distance from the neutral axis of the shaft (z-axis) and 

integrated over the cross sectional area, the resulting moments become: 
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M=\<rxrcos6dA = ?s-EI 
J r 

(51) 

M y = $(JxrsmddA = --^//,J(Q-fi)) (52) 

The moment in the z direction is due to the bending of the shaft in the x-y plane 

(bearings remain fixed, shaft experiences jump rope like motion, or whirl). Since the 

shaft is not bent in the x-z plane, the moment in the y direction must be balanced by 

additional forces. To achieve equilibrium, a viscous internal damping force must be 

tangent to the shaft whirl orbit (see Figure 16). The particular direction of the force 

depends on the sign of the (Q-co) term. For sub-synchronous motion it is positive (i.e. the 

spin speed is greater than the whirl speed). In this case the force is in the direction of the 

whirling shaft and feeds energy into the system, [6]. 

Ifß>CO, 
^internal viscous damping " UINol AxSJ-Jl 

Ifß<(0, 
^internal viscous damping ' 

STABLE 

Figure 16: Rotating, Whirling Beam Cross Section 
Showing Direction of Internal Damping Force, No External Damping 

Recall the claim that any amount of external damping can improve the stability of 

the system. This fits into the above argument due to the fact that these external damping 

forces are always in the opposite direction of the shaft whirl, thereby removing energy 
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from the system. The stability lies in the comparison of the two forces (see Figure 17). If 

the external damping force dominates, the shaft is stable, but if the internal damping force 

dominates, the shaft is unstable. The instability threshold occurs where they exactly 

cancel. 

II i£ > CO, Tinten,^ viscous damping 

external damping 

Figure 17: Rotating, Whirling Beam Cross Section 
Showing Directions of Internal and External Damping Forces 

Ehrich continues in the derivation to define values of both the internal and 

external forces and obtains: 

■ d*y 
Finiemaldamping=ßi^-0))I-^ = Ciyo{ß-(O) (53) 

Fexternal damping  ~ Me^o ~ ^V^o^ (54) 

where y0 is the maximum shaft deflection. 

At the instability threshold, the two forces are set equal to one another giving: 

ci(Q.-ca)^ceüi (55) 
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At this point, the shaft will be whirling at its critical speed, (Qcr)- This has been 

confirmed by observations made by Kimball, [10], and by a separate analysis by Ehrich, 

[13]. Making the co = Q.cr substitution and rearranging the terms in a non-dimensional 

form leads to: 

a 
a i-A (56) 

which agrees with Smith's original equation, [8]. 

To graphically represent the effects of viscous internal damping, Figure 18 shows 

a typical Campbell Diagram with whirl speed a> and rotor spin speed Q. The first critical 

speed, Clot, and the instability threshold speed, Qth, are shown on the spin speed axis. In 

this case, since the rotor does not become unstable at the first critical speed, a certain 

amount of external damping exists. Eventually, as the rotation speed, energy, and shaft 

amplitude/orbit increase, the bearings will not be able to dissipate all of the energy and 

the shaft will become unstable. 

Whirl    ' 
Speed, to 

co = Q 

— Fwd whirl 
(mode I) 

Bwd whirl 
(mode I) 

Rotor Spin Speed, Q. 

Figure 18: Campbell Diagram for Rotor with Internal 
and External Viscous Damping 
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3.3 Internal Hysteretic Damping 

As noted previously in Chapter 2, the first researchers to study internal hysteretic 

damping in rotating systems were Newkirk and Kimball in 1924, [10]. While performing 

their tests and doing analyses, they concluded that internal hysteretic damping might be a 

possible cause for the shaft whirl and instability. Years later, Dimentberg, [15], and 

Lund, [11], took advantage of the work done by Kimball and incorporated internal 

hysteretic damping into the rotordynamic equations of motion. 

Lund began his derivation with the internal hysteretic damping model (defined in 

Chapter 2). The constitutive relationship between the bending strain and bending stress 

for this model was originally expressed by Lund as: 

— = —ATcosr Mvsinr = , IM -Mxj 
dz     El    z EI    y ElJ[+¥ v     fc (57a,b) 
— = —Af,siny+—Mvcosr = , -(AT, +£Mr) 
dz     EI    z EI    > EI-JÜ1F       > 

where 0 and § are angular shaft displacement defined in Figure 19. The logarithmic 

decrement for the internal hysteretic damping of the shaft was related to the quantity i 

by 

£ = - (58) 
71 

and 

£ = M (59) 
0) 
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where the X and the Q) are the real and imaginary parts of the eigenvalue solution to the 

equations of motion. Note that the constitutive equations already suggest an iterative 

solution. 

*■ z 

station n /. station n+1 

Figure 19: Rotor Configuration for Displacements, Lund 

Note: Later Nelson, [2], refined the constitutive relationship into a more familiar form 

relating stress and strain directly, as described in Chapter 2: 

& = E £VH +—" '" (36) 

Next, Lund modified the conventional FEM beam equations to include internal 

hysteretic damping and then converted them into a form suitable for the Myklestad-Prohl 

numerical method. This method involved representing the rotor by a series of lumped 

masses located at stations connected by uniform shaft sections, (somewhat similar to the 

modern finite element method). This technique produced the following equations used to 

solve for the displacement at the next station, n+1, based on the displacement of the 

previous one: 
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Xn+l -Xn+ln&n+- 

yn+i = yn+ln<i>n + 2 V   >" "'   I  6     (KGA)„ j1 )n       W 
{EI)J\ 

(60a,b) 

#«+i - #„ + 

&+,=& + 

(£/)„Vl 

1 

+f2 

(£/)„Vi +£2 

IHM' -m')+ ^-(v' -£v') n    \     xn yn /       r*    \  xn yn / 

j 2 

i2 (M V„ +M')+^- (y' + eV') n    \     yn xn /        o    *   ^ 

(61a,b) 

MXilrtl=Ml+Z.v: 

My,n+1=M'yn+lnV'.n 
V =v' 
V =v' r )',n+l       ' yn 

(62,a,b,c,d) 

where the moments and shears are represented by M and V, and the shaft material and 

physical properties as K, G, E, A and I (see Figure 20). 

Mx, 

et 

m, 

M' 

m„+i 

Mx,n+i 

pC |(Ei)n,(KGA)n| -^1 
V' 

M' x,n+l 

P 
Vx,n+1 

Station n Station n+1 

Figure 20: Rotor Configuration for Bending and Shear Forces, Lund 

In addition to the displacements of the rotor, the Myklestad-Prohl method was 

also used to solve for the eigenvalues of the equations of motion. This solution took the 

form of S = A±icü , where the real part indicated the growth/decay of the whirl orbit and 

the imaginary part represented the whirl speed noted previously. Lund then further 

3-12 



reduced this result into a more manageable form by the use of the log decrement given in 

equation (59): 

6 = -— (63) 
CO 

Lund added the negative sign to indicate that positive values of the logarithmic 

decrement resulted in stable systems while negative values resulted in unstable systems. 

Using this log decrement notation, the case for an undamped (no external 

damping) rotor system with internal hystereric damping was solved. Lund found that the 

log decrement for all forward modes was always negative, which indicated instability. In 

addition, he found that the log decrement for all backward modes was always positive, 

which indicted stability. In a separate study mentioned by Lund, [11], he added external 

damping through the bearings to the rotating system, and found that the forward mode 

stability could be achieved for all speeds. The results and conclusions obtained by Lund 

agreed with the earlier analysis conducted by Dimentberg, [15]. 

3.4 The Effect of External Damping on the Instability Threshold 

To assist in the study of the effect of external damping on the instability 

threshold, the Draper Laboratory FEM Rotor program was employed (see Chapter 4 for 

discussion and verification of this program). For this short numerical study, viscous 

external damping was applied separately to two rotor systems: one with internal viscous 

damping and one with internal hysteretic damping. 
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The first case that was run on the program, verified the results obtained by Smith 

and Ehrich, where the instability threshold for a system with internal and external viscous 

damping was given by: 

n th  _ 

a (56) 

Figure 21, shows the non-dimensional ratios of the instability threshold and the 

critical speed versus the ratio of the external viscous damping to internal viscous 

damping. The data from the finite element model solution match closely with equation 

(56). As more finite elements were added to the program, the results continued to 

approach the exact solution. 

>-  1 

0.5 
a 
DC 

STABLE 

Solid - Equation (56), Smith 
x-FEM 

0.5 1 1.5 2 
Ratio of External to Internal Damping 

2.5 

Figure 21: Stability Thresholds for Viscous Internal and 
Viscous External Damping 

The next configuration involved adding viscous external damping to a rotor 

system with only hysteretic internal damping. Since the ratio of viscous external 

damping and hysteretic internal damping cannot be put in a non-dimensional form, a plot 
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different from Figure 21 was required to show the relationship. Figure 22 shows the 

values of viscous external damping (given by \LJE) required to maintain stability at all 

speeds for given values of internal hysteretic damping. For zero internal hysteretic 

damping, no viscous external damping is required to maintain stability. For increasing 

values of internal hysteretic damping, the required viscous damping to maintain stability 

at all speeds increases linearly. If the external viscous damping is less than that given by 

Figure 22, all of the forward modes will be unstable in a range of spin speeds beginning 

at Q = 0+. 

xid° 

0     0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01 
Amount of Internal Hysteritic Damping, T|H 

Figure 22: Amount of Viscous External Damping Required for Stability with 
Internal Hysteretic Damping 

Another way to demostrate this relationship is shown in Figure 23. This plots the 

log decrement of the eigenvalue solution (as defined by Lund, [11]) for fixed internal 

hysteretic damping as a function rotor spin speed Q. It also shows a family of curves, 

which represent constant viscous external damping. Although it seems unlikely that the 

rotating system will ever be spun at the high speeds shown, it does appear that the rotor 
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would eventually become stable. As the external damping increases, the speed at which 

the system becomes stable approaches the origin. One conclusion from Figure 23 is that 

even though the rotor internal damping is speed independent (due to the internal 

hysteretic damping), the stability of the total system is indeed speed dependent due to the 

external viscous damped bearings. Figure 22 is consistent with the conclusions reached 

by Lund, [11] and Dimentberg, [15], but Figure 23 gives some new results on the 

interaction between external viscous damping and internal hysteretic damping. 

0.02 

0.01 - 

-0.01 - 

 1  

STABLE 

Increasing External 
Viscous Damping                               . ■— 

UNSTABLE 

t                                                    I                                                   1 

5000      10000      15000 

Spin Speed (Hz) 
20000 25000 

Figure 23: Log Decrement versus Spin Speed for System with Internal Hysteretic 
Damping and a Family of Constant External Viscous Damping Curves 

The final configuration involved adding hysteretic external damping to a rotor 

system with only hysteretic internal damping. Although, the FEM model was not 

modified to represent the external hysteretic damping, it could be argued that one could 

draw the plot based on intuitive reasoning. First, since both external and internal 

damping are hysteretic, or speed independent, the logarithm decrement of the eigenvalue 
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solution versus the spin speed would be horizontal lines. (Note: In the next section, the 

FEM does actually support this claim for the case of zero external hysteretic damping. 

See Figure 31). Therefore, similar to the previous figure, Figure 24 plots the log 

decrement of the eigenvalue solution for fixed internal hysteretic damping as a function 

rotor spin speed Q. But this time, the family of curves represents the constant external 

hysteretic damping. Note that as the external hysteretic damping is increased, the parallel 

lines shift toward the origin and toward stability. 

Unlike the external viscous damping where the spin speed determines stability (no 

matter how much external damping is applied), the external hysteretic damping is the 

only factor in determining stability for this case. Figure 24 is consistent with the 

conclusions reached by Lund, [11] and Dimentberg, [15], although it clarifies them in the 

respect to the influence of external hysteretic damping to the stability of the system. 

+ 
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 1 1 1 r- 

Increasing 
Hysteretic 
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External 
Damping 
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■                    ■                    i                    i 

5000 10000    15000    20000    25000    30000 
Spin Speed (Hz) 4 

Figure 24: Log Decrement versus Spin Speed for System with Internal Hysteretic 
Damping and a Family of Constant External Hysteretic Damping Curves 
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One can now draw the following conclusions: 

If the external and internal damping are both viscous in nature, then the rotor will 

always be stable in its sub-critical speed range. Stability can be extended into the 

supercritical regime by adding external damping according to the results obtained by 

Smith in equation (56). 

If the external and internal damping are both hysteretic, the rotor will be unstable for 

all speeds unless the external damping is large enough to establish stability. In this 

case, the rotor will be stable for all speeds. 

If the external damping is viscous and the internal damping is hysteretic, the rotor 

will be unstable in a range of speeds beginning at Q = 0+. As the external viscous 

damping increases, this speed range shrinks toward Q = 0 until the external damping 

reaches a value that results in stability for all speeds, i.e. for Q. > 0. 
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Chapter 4 Finite Element Model of Rotor 

4.1 Finite Element Method - A Timoshenko Rotor Element 

In recent years, the finite element method has been successfully applied to 

rotordynamic systems. Although all rotor elements are based on the simple beam 

element, a number of variations have been developed. One such element is based on 

Timoshenko beam theory. This element has 2 nodes and 8 Degrees of Freedom and uses 

third order shape functions to describe the bending of the elements. All additional inertia 

are assumed to be rigid discs with lumped mass properties and the bearings are assumed 

to be linear and discrete. The model includes rotary inertia, gyroscopic moments, and 

shear deformation effects. A more detailed discussion of a Timoshenko rotor element is 

located in Appendix B. 

In the late seventies, Nelson published several papers, [16, 17], to determine the 

accuracy of the Timoshenko rotor element and to document current works. His technique 

used the Lagrangian approach and was based on the potential and kinetic energy of the 

rotating element in Figure 25. 
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' Bearing Center Line 

Figure 25: Rotor System Configuration, Nelson 

The potential energy of the rotor was stored in two forms, bending deformation, and 

shear deformation (axial loads were neglected) and was given by: 

vJfc>vJn & W>
G
LT shear 

bend „ bend „ shear . W. 
(64) 

shear, 

where the shear deformation factor is given by K and the second derivative of the bending 

deformation in the y direction is represented by V"end. The rotor kinetic energy included 

Timoshenko effects of rotary inertia, shear deformation, and the gyroscopic energy. It 

was given by: 

-Mil (IM> 1    JVI-IVI..H      ft^ 

o2      [W\   [W]       {2 

+]±pipn
2ds-)ipnßtdz 

r    r 
(65) 

Evaluating these integrals leads to the familiar forms for equations (64) and (65): 

V=\{qJ([Kbend] + [Kshear])[q} (66) 
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T = ±{qj (lMtrans ] - [Mrot ]M- OfcF &]&}+ \lp& (67) 

Nelson then proceeded to systematically derive the element matrices in equations (66) 

and (67) (see Appendix B). By the application of Hamilton's extended principle, and 

using the above equations, Nelson produced the following undamped matrix equations of 

motion: 

([M,mJHMrJ){v}-WG]{q} + [Ce]{q} + [K]{q} = {f} (68) 

where: 

{q} - fixed frame physical coordinates 

{f} - fixed frame external forces 

[Ce] - external damping matrix 

Similar to the Jeffcott rotor with the non-central disc, the eigenvalues for the 

undamped equation of motion (where [Ce] = 0) occur in conjugate pairs. The eigenvalues 

are given by: S. = ±ioaj, where the imaginary pair ±co represents the forward and 

backward whirl frequencies of the shaft. 

4.2 Addition of Internal Damping 

Based on the work of Zorzi and Nelson, [2], the previous derivation of the 

rotordynamic equations of motion can be extended to include the contributions of internal 

damping. Nelson used both of the internal viscous and hysteretic damping models 

discussed in the previous chapters. Adding the constitutive relationship of equations (19) 

and (36) yields the following equation: 
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ax=E 
V1 + 77«2 

Vv + 
VH 

&^ + VH 

(69) 

After substituting the modified constitutive relationship into the internal bending 

moments and performing the integrations, the moments can be expressed as: 

= EI 

I + VH 

-JI + VH* 

1
+7

7H ^ 

( 
1 + VH 

\ 

+j]vQ 

V1 + V 
\w"\ ■ + EI 

0    -77v 

in 
\w"\ 

(70) 

where the internal damping matrix was defined as: 

W= 

l+*7* 

VlW 

: + 7/vQ 

1+^ 

1 + VH 

+/7VQ 

^•V 

(71) 

Now placing the energy contributions from these moment equations into the 

appropriate kinetic or potential energy equations (Lagrangian approach), Nelson finally 

proceeds to derive the equation of motion for a Timoshenko shaft finite element with 

internal damping. This is given by: 

([Mtrans] + [MrotMq} + (riv[K)-n[G] + [CM<i} + 

(72) l+T]" AK^{nva^^ä==)[Kcir] 
4l+7il 4l+ri2H 

{q} = {f} 

All of the instabilities of the system are characterized in the new skew-symmetric 

circulation stiffness matrix, [2]. It is given by: 
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[^ar]--yr 

0 

-12 0 s&ew sym 

61 0 0 

0 61 -4/2 0 

0 -12 6/ 0 0 

12 0 0 6/ -12 0 

6/ 0 0 2l2 -61 0 

0 61 -2/2 0 0 -61 

(73) 

0 

-4/2    0 

(Incidentally, the circulation matrix given in reference [2] was incorrect due to misplaced 

negative signs. Equation (73) is the correct circulation matrix.) It is also important to 

point out the significance of ther]v[K]{q} term in equation (72). Although this term 

involves the viscous internal damping coefficient, it does not produce instabilities. Recall 

Figure 16 where the direction of the internal viscous damping force depended on the sign 

of the (Q-CD) term in equation (53). Equation (72) takes this effect into account by the 

7]v[K]{q} term. At spin speeds less than the critical speed (for systems without external 

damping), this term dominates, resulting in a stable system. But at speeds above the 

critical speed, the terms involved with the circulation matrix dominate, resulting in an 

unstable system. This is in agreement with the findings documented by Smith [6] and 

Ehrich [13], and is also consistent with Figure 16 in Chapter 3. 

Solving the equations of motion with internal damping results in eigenvalues in 

the now familiar form of: Sj = X-} ± IAJ ., where again, co provides shaft whirl frequency 

and X provides the orbit growth/decay rate after a perturbation. Nelson then followed 

Lund's logarithm decrement approach in determining where the rotor system became 

unstable. (Recall that the instability threshold occurs when the 8 crosses zero when 

approaching from positive values.) The Campbell Diagram in Figure 26 shows a rotor 
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with both internal viscous and hysteretic damping and external damping. It gives a good 

indication of how the stability of the rotor changes as the values of 8 approach and 

surpass zero (at the instability threshold). 

Whirl    ' 
Speed, co 

Instability 
Threshold 8 = 0 

(0 = Q. 

Unstable 8 < 0 
  Fwd whirl 

(mode I) 

Bwd whirl 
(mode I) 

ßc ßth 

Rotor Spin Speed, £1 

Figure 26: Campbell Diagram for Rotor with Internal and External Damping 

4.3 Validation of FEM Model 

In line with its work on magnetic bearings, The Charles Stark Draper Laboratory 

has produced a rotor dynamic finite element model (Antkowiak) that is based on 

undamped Timoshenko beam theory. In this model, all additional inertia are assumed to 

be rigid discs with lumped mass properties and the bearings are assumed to be discrete, 

undamped, and linear. The model includes rotary inertia, gyroscopic moments, and shear 

deformation effects. 
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After making the appropriate modifications to include internal and external 

damping, several test cases were run to check the accuracy of the extended rotor model. 

The bulk of the test cases were taken directly from Nelson, [2]. The following gives 

details on some of the validation of the extended rotor FEM model. 

The first case involved an undamped (no internal or external damping) steel rotor 

supported by identical bearings. The physical dimensions of the rotor were a length of 

1.27 meters and a diameter of 10.16 cm. The stiffness of the undamped isotropic 

bearings was 1.75xl07 N/m. 

Figures 27 and 28 show the agreement between the Draper extended model and 

Nelson's solution. The first critical speed given by Nelson was 4950 rpm, while the 

Draper FEM model calculated 4976 rpm. The small discrepancies could be attributed to 

the fact that this particular example by Nelson did not take into account shear effects. 

15000 
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o - Nelson Backward Mode 

4000 6000 8000 
Rotor Spin Speed (rpm) 

10000 12000 

Figure 27: Draper FEM Model Compared to Nelson Solution, 
Undamped Rotor Supported by Identical Bearings, Modes 1 and 2 
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Figure 28: Draper FEM Model Compared to Nelson Solution, 
Undamped Rotor Supported by Identical Bearings, Modes 1 and 2 (Detailed View) 

The next test case involved the same rotor but also included internal viscous 

damping in the rotor (no external damping). The amount of internal viscous damping 

was T|v = 0.0002 sec"1. Figure 29 shows the logarithm decrements of the first and second 

modes (both forward and backward) as a function of spin speed. The positive values of 

the log decrement indicate that the system is stable, while the negative values indicate 

instability. Good agreement is shown between the Draper FEM extended model and 

Nelson. 
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Figure 29: Log Decrements, Rotor with Viscous Internal Damping, 
No External Damping, Modes 1 and 2 
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It is important to point out that the log decrements for the all of the backward 

modes are increasing and therefore will always be stable. On the other hand, the forward 

modes initially are stable for speeds under their respective critical speeds, then become 

unstable as the log decrement crosses the x-axis. Note that this agrees with the theory of 

internal viscous damping described in Chapter 3. 

Figure 30 shows the logarithm decrements of the first and second modes when 

external viscous damping is added to the rotor system through the bearings. The exact 

amount of external damping added to the bearings was 1.75xl03 Ns/m. Close agreement 

is again shown. Note that the stability of the system was improved, i.e. the instability 

threshold was moved approximately 5,000 rpm higher than the first critical speed. In 

fact, the second forward mode will remain stable past 15,000 rpm. This effect of adding 

external damping to the system also agrees with the internal viscous damping model in 

Chapter 3 and in Figure 21. 
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Figure 30: Log Decrements, Rotor with Viscous Internal Damping and 
Viscous External Damping 

The next validation involved returning to the same rotor and this time only 

included internal hysteretic damping (TJH = 0.0002). Figure 31 shows good agreement 
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between the log decrements calculated by the Draper FEM extended model and Nelson. 

Similar to the results calculated by Lund and Dimentberg (described in Chapter 3), all of 

the forward modes are unstable and all of the backward modes are stable. 
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Figure 31: Log Decrements, Rotor with Hysteretic Internal Damping, 
No External Damping, Modes 1 and 2 

Figure 32 shows the logarithm decrements of the first and second modes when 

external viscous damping is added through the bearings to this rotor system. This 

addition of 1.75xl03 Ns/m per bearing completely overcame the effects of the internal 

hysteretic damping (T|H = 0.0002), resulting in a rotor system stable for all speeds (both 

forward and backward modes). 
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Figure 32: Log Decrements, Rotor with Hysteretic Internal Damping 
and Viscous External Damping 
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The extended rotor FEM model was successfully validated with the test cases 

provided by Nelson, [2]. Now it could be used to predict the critical speeds and 

instability thresholds for other rotors. 
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Chapter 5 Magnetic Bearing Simulation Design 

5.1 State-Space Model of Rotor - No Internal Damping 

In addition to calculating the critical speeds, the original Draper Lab FEM 

program (Antkowiak) was also designed to produce state space matrices that described 

the rotor system. This state space model was then placed in a Matlab™ magnetic bearing 

simulation developed by Draper Laboratory (Schölten) to test the closed loop control of 

the entire rotor system. Originally, the program produced a state-space model that did not 

include internal damping and only included a small amount of external damping 

estimated by the relationship: 

[CJ«2[£B], diagonal (74) 

where the external viscous damping ratio was given by C,. 

The original FEM model used generalized eigenvectors, modal coordinates and 

state space coordinates to calculate the state-space model. First, the undamped, non- 

rotating, homogeneous equation of motion in physical coordinates, 

[M]{q}+[K]{q} = [0] (75) 

was used to find a set of eigenvectors and eigenvalues. These eigenvectors were then 

placed in then xn modal matrix [<E>], where each column represented a different 

eigenvector or mode. 

5-1 



pm pm   . p(n)" 

p(i) 
r2 

D(2) 
■«2 

« 
n(«) 

[*]= 

The eigenvectors were then mass normalized by the following equation: 

(76) 

fel« 
{<D (Di {<*> (2)1 {Ow} 

^fRP) V{4>(2)}r[M]{<D(2)}     V{*w}r[Ml*W)} 
(77) 

If one converts the entire non-homogeneous differential equation derived by Nelson, 

([Mlmns] + [Mwtmq}-Q[G]{q} + [Ce]{q} + [K]{q} = {f} (69) 

to modal coordinates, it becomes: 

([MtraJHMrJ)m{^} + (lCJ-a[G]l^]{i}HK}m{^ = {f(t)} (78) 

where the output in physical coordinates q is given by modal coordinates, ^, in the form 

of: 

{q}=mV;} (79) 

Now, if equation (78) is pre-multiplied by the transpose of the mass normalized modal 

matrix, [<E>]T, it gives 

M ([Mtmns ] + [Mrot ])[$] {£} + mT ([Ce ] - Q[G]][0] {£} + 

+mT[K]m{£}=mT{f(t)} 
(80) 

This form of the equation lends itself to the use the property of orthogonality where: 

mT lMtrans ] + [Mrot ]JO] = [/], diagonal 

mT(-Q[G] + [Ce])m = (\G + 2[£ü)\]) (81a,b,c) 

[Of [K]m = [(02], diagonal 
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At this point, a modal reduction technique was used to reduce the number of states 

in the mass, stiffness, and gyroscopic matrices of equations (81). This eliminated the 

higher frequency modes outside the speed range of interest. 

When the property of orthogonality is used, equation (80) reduces to: 

{^} + (2[Co)] + [G]){i} + [0)2m = mT[L]{f(t)} (82) 

where again, the external damping is estimated by: 

[C,]«2[£B], diagonal (74) 

It is important to emphasize that this is an approximation since [0]T[CJ[0] will not, in 

general, be diagonal. 

If one lets m forces be applied to rotor at the appropriate nodal points, the force 

vector force vector {f(t)} in equation (82) must be modified to account for the difference 

between the number of forces applied, m, and the number of modes in the modal matrix, 

h. This inflation is accomplished by the h x m matrix [L] where 

[L]    {/}    >   [L]{/} (83) 

nxmmxl nxl 

To construct the state space model, the equations of motion must now be 

converted to state space coordinates of the form: 

{«} = [{£},{£}/ (84) 

With this substitution, the equation of motion (82), in matrix notation, becomes: 

ItO]   [/]lä} + [[ö>2]   [(2[C<o] + [G])}a}=mT[L]{f(t)} (   } 

If equation (85) is combined with the identity 

[[/]   [0]]{dr} + [[0]   -[/]]{«} =0 (86) 
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it gives: 

[/]   [0] 
[0]   [/] 

{«} + 
[0] 

[co2] (2[£y] + [G]) 
{a} = mT[L]{f(t)} (87) 

Now using the standard definitions for state space theory, equation (87) can also be 

written as 

{ä} = [A]{a}+[B]{f(t)} 

where the state space dynamics matrix [A] is defined as 

(88) 

[A] = 
[0] [/] 
[co2]   -(2[£»] + [GJ) 

,2n\2n (89) 

and the state space actuator matrix, [B], is defined as 

[B] = 
[0] 

mT[L] 
,2h\m (90) 

To recover the physical displacements of the output at all nodes (or locations defined by 

the actuator matrix), state space theory requires that 

{q] = [C]{a] (91) 

where the sensor matrix, [C], is defined as: 

[C] = frO]   [0]}mx2n (92) 

Although this definition of the sensor matrix requires the displacement sensors to be co- 

located at the positions that the forces are applied, the original model and simulation did 

take into account the fact that the sensors were not exactly collocated with the magnetic 

bearing actuators. 
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5.2 State-Space Model of Rotor - Internal Damping Included 

If internal damping is included in the FEM model and equations of motion 

(creating the new extended rotor model), the method to calculate the state-space model 

remains the same, but the results are more complicated. Starting with the same 

undamped, non-rotating, homogeneous equation of motion in physical coordinates, 

[M]{q}+[K]{q} = [0] , (75) 

a set of eigenvalues and eigenvectors are calculated. These eigenvectors were then placed 

in the modal matrix [O], and were mass normalized by equation (77). If one converts the 

entire non-homogeneous differential equation derived by Nelson, 

([Mtrans] + [Mrot]){g} + (T]v[K]-Q[G] + [Ce]m} + 

{q} = {f(t)} 
yi+77* v1+77» 

(71) 

to modal coordinates, it becomes: 

([Mtmns} + [Mrot ])[*] {£}} + (TJV [K] - ß[G] + [Ce ])[*] {£} + 

mit)=im) 1+^r[*]+fo1,n+-jJ^)[*dj 
^+n2„ V1+77* 

(93) 

where the output in physical coordinates, q, is given by modal coordinates, £, in the form 

of: 

{q) = m{i) (79) 

Now, if equation (93) is pre-multiplied by the transpose of the mass normalized modal 

matrix, [<&]r, it gives 
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[*f Wtrans ] + [Mrol ])[*] {£'} + mT (Vv IK) - ^[G] + [Ce ])[0] {£} + 

[$f 1 + 7?" :[K] + (TjvQ+^M=)[Kcir] 
4l+ril Ji+vl 

mtf}=mT if(t)} 
(94) 

This form of the equation lends itself to the use the property of orthogonality where: 

mT ([Mtrans ] + [Mrot ])[0] = [/], diagonal 

[*f (TJV [K] - Q[G] + [Ce ])m = [G] (95a,b,c) 

m1 1
 + 77^[A:] + (^Q + ^=)[^,] 

,41+TII ^ + Vl 
m=[K] 

At this point, a modal reduction technique was used to reduce the number of states 

in the mass, stiffness, and gyroscopic matrices of equations (95). This eliminated the 

higher frequency modes outside the speed range of interest. 

When the property of orthogonality is used, equation (94) reduces to: 

{^ + ([G]){^ + [K]{^} = mT[L]{f(t)}, (96) 

where this time, the external damping is not approximated by the damping ratio. Also, 

note that the new [K] matrix does not have the advantage of being diagonal (which 

complicates the solution). 

Again, if one lets m forces be applied to the rotor at the appropriate nodal points, 

the force vector force vector {f(t)} in equation (96) must be modified to account for the 

difference between the number of forces applied, m, and the number of modes in the 

modal matrix, h. This inflation is accomplished by then x mmatrix [L] where 

[L]    {/} 
n xm  mx 1 

■*   Ml/} 
nxl 

(83) 

To construct the state space model, the equations of motion must be converted to 

state space coordinates of the form: 
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{<*} = [{£U£}]7 (84) 

With this substitution, the equation of motion (96), in matrix notation, becomes: 

fcO]   [7]fc*} +Ul   [G]}a} = mT[L]{f(t)} 

If equation (97) is combined with the identity 

[[/]   [0]]{df} + [[0]   -[/]]{«} =0 

(97) 

(85) 

it gives: 

[/]   [0] 

[0]   [/] 
{«} + 

[0]      -[/] 
{a} = mT[L]{f(t)} (98) 

Now using the standard definitions for state space theory, equation (98) can also be 

written as 

[ä} = [A]{a} + [B]{f(t)} 

where the state space dynamics matrix [A] is defined as 

(88) 

[A] = 
[0] [/] 

-in -as) , 2n x 2n (99) 

and the state space actuator matrix, [B], is defined as 

[B] 
[0] 

mT[L] 
,2nxm (90) 

To recover the physical displacements of the output at the nodes, state space 

theory requires that 

{q} = [C]{a} (91) 

If one assumes that displacement sensors where located exactly where the forces where 

applied, the sensor matrix [C] is defined as: 

[C] = ftO]   [0]]mx2n (92) 
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Note that the [B] and [C] matrices remain the same if internal damping is added to the 

system. Only the state space dynamics matrix, [A], is affected. 

One final item to discuss is the speed dependence of the [A] matrix for either case 

(with or without internal damping). This means that a unique [A] matrix exists for every 

spin speed Q. To overcome this, a fitting function based on the quadratic Lagrange 

Polynomial was used in the improved simulation (originally by Schölten) to calculate the 

individual [A] matrices as the speed varied. 

5.3 Magnetic Bearing Simulation Description 

After the FEM program calculated the state space matrices, they were placed in a 

Matlab™ magnetic bearing simulation developed by Draper Laboratory (Schölten) to test 

the closed loop control of the entire rotor system. It used numerical integration to 

produce time history plots of rotor displacement in mils, bearing forces in lb, bearing 

slew rates in lb/s, etc. The numerical integration was performed using a Runge-Kutta 

method with a variable step size ranging from 1x10" to 1 x 10" seconds. 

The original simulation included the state space model for a rotor without internal 

damping, mathematical models for the bearings, disturbance functions, and rotor 

imbalance and included appropriate time delays/lags to capture the workings of the entire 

system. Figure 33 shows a simplified block diagram based on the Simulink™ model 

(Schölten). 

The flux-feedback shown in the figure attempts to compensate for the magnetic 

materials non-linearities. The flux-feedback, actuator magnetics and power amplifiers are 
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assumed to work together as a linear actuator, modeled as having force and slew rate 

limits combined with a low pass frequency response, [18]. 

Due to the modal reduction technique mentioned in the previous section, the state 

space matrices used by the simulations only included frequencies up to the first critical 

speed. By eliminating the higher frequency modes outside the speed range of interest, 

simulation calculations were completed faster. 

Desired 
Rotor 

Position    + 

Power 
Amplifier 

Disturbances 

O- Controller 
PID        UQ-^Q^J      Mag 

Bearings 
Rotor 

[A],[B],[C] 

Unbalance 

J change in flux 
from sensor coil 

Actual 
_►   Rotor 

Position 

Figure 33: Simplified Block Diagram of Magnetic Bearing Simulation, (Schölten) 
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5.4 Controller Design 

The bearing controllers used for the simulation were designed in the frequency 

domain using linear Matlab™ based software tools developed at Draper Laboratory. The 

control system individually controlled each axis on the bearing, or employed a 

decentralized control strategy. The algorithm used for the controller was classical PID. 

This included the proportional control for broad band stiffness, the integrator control 

(with anti-windup) for high load carrying capacity, and derivative control to damp 

disturbances, [18]. 

The actual values used for the proportional and derivative constants were 

extremely important in characterizing the maximum stiffness and damping characteristics 

of the bearings. The proportional constant, in units of lb/mil, provided the maximum 

stiffness that the magnetic bearings could provide. The derivative constant, in units of lb- 

sec/mil, gave the maximum damping that the bearings could provide. 
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Chapter 6 Modeling and Simulation Predictions and Comparison 
to Actual Rotor Data - No Internal Damping 

In line with its work on magnetic bearings, Draper Laboratory produced a rotor 

dynamic finite element model (Antkowiak), an accompanying magnetic bearing 

simulation (Schölten), and a rotor/magnetic bearing testing apparatus. To determine the 

accuracy of the FEM modeling and the simulation, several test runs were made on the 

rotor test apparatus. Appendix A details the data acquisition rate and other important 

information regarding actual rotor testing. 

6.1 FEM Modeling 

The actual rotor modeled by the original FEM program included a 3/8" diameter, 

14.7" long stainless steel shaft, two magnetic actuator rotors and an elastic coupling 

attached to one end. Figure 34 shows the basic configuration. 

Actuator 
Rotors 

XIJi 
Elastic 

Coupling 

£    2   BH 

Steel Shaft 

Figure 34: FEM Model of Entire Rotor 
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The pertinent physical properties of the shaft material included a Modulus of 

Elasticity of 29.5 x 106 psi, a Poisson's ratio of 0.33, and a density of 7.27 x 10"4 lbf/in3. 

The shaft was modeled as 20 Timoshenko rotor elements. 

As Figure 34 shows, an elastic coupling was necessary to connected the shaft to 

the drive motor. This elastic coupling was modeled as the first element in the FEM 

model with a Modulus of Elasticity of 10.0 x 106 psi, a Poisson's ratio of 0.45, and a 

density of 7.50 x 10"4 lbf/in3, [19]. 

The two magnetic actuator rotors consisted of a magnetic alloy laminated onto a 

common aluminum housing secured by a brass nut. Each was modeled geometrically as 

a stiffened shaft with added mass and gyroscopic inertia. This meant that each of these 

rotor sections would have the same diameter as the shaft (in the FEM input file), but 

would have an artificially increased stiffness to compensate for the effects of the larger 

diameter rotor. This increased bending stiffness was calculated to be 4.69 times that of 

steel. Due to the interference fit, only half of this value was used to modify the Modulus 

of Elasticity. This resulted in a Modulus of Elasticity of 69.3 x 106 psi, a Poisson's ratio 

of 0.33, and a density of 8.40 x 10"4 lbf/in3, for the elastic coupling, [19]. 

With regard to the additional mass and inertia, Figure 35 shows the locations 

where they were concentrated along the rotor axial length. In addition, Table 2 shows a 

summary of the added mass and inertia for the magnetic actuator rotor. The input file for 

the FEM program describing this rotor is located in Appendix C. 
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1    2     3 

Actuator       Brass Nut 

  1.3"  

Figure 35: FEM Model of Rotor Actuator 

Table 2: Calculations of Added Mass and Inertia Due to Actuator Rotor 
Location 1 2 3 4 

Axial Length (1.3 in) 0.18 0.43 0.47 0.22 
Mass (188 lbm)xlO"b 26. 62. 68. 32. 

Ivv x It)
-0 in4 1.2 3.6 4.1 1.5 

Ixx x 10"6 in4 2.2 5.3 5.8 2.7 

An important part of the FEM analysis was determining the stiffness and damping 

characteristics of the bearings. Although magnetic bearings are able to change their 

stiffness and damping depending on the position of the shaft, the FEM program required 

constant values for its calculations. In an attempt to model the magnetic bearings, the 

stiffness and damping was estimated to be 50 lbs/in and 1.5xl0~2 lbs-sec/in, respectively. 

These were based upon the maximum stiffness and damping that the controller could 

provide. More specifically, they were taken directly from the proportional and derivative 

constants (in units of lb/mil and lb-s/mil, respectively) of the PID controller with the time 

delays and system lags taken into account. 

The rotor free-free natural frequencies are presented in Table 3. The first four 

modes show the rigid body modes at zero Hertz since both rotor ends are free. (The 

additional zero frequency modes are present due to the forward and backward 

components of the state-space model.) These rigid body modes consist of the conical 

6-3 



mode and the cylindrical (or bounce) mode. The last entries in the table are the first three 

natural frequencies of the non-rotating rotor. 

Table 3: Rotor Free-Free Natural Frequencies for Q. = 0 
Mode# Rotor Natural 

Frequencies (Hz) 
1-2 0.0 
3-4 0.0 
5-6 269.9 
7-8 790.5 
9-10 1,559.7 

Figure 36 presents the Campbell Diagram for the rotor model. The symmetric 

bearings have a stiffness and damping of 50 lbs/in and 1.5xl0"2 lbs-sec/in, respectively. 

The intersections between the diagonal line (synchronous whirl) and the whirl frequency 

pairs indicate possible critical speeds. The rigid body modes, the whirl frequency pairs, 

and the critical speeds for the rotor model are given in Table 4. The critical speed for 

each mode is in bold text. 

Mode 2 
700 " 

600 ^ 

500 ^^ 

400 /^ 

300 Mode 1 ^^ 

200 /^" Mode 1 Critical Speed - 272 Hz 

100 

0.5 1 1.5 2 2.5 
Rotor Spin Speed (rpm) 

3.5 

x104 

Figure 36: Campbell Diagram for Rotor 
,-2- Bearing Stiffness = 50 lbs/in, Bearing Damping = 1.5x10" lbs-sec/in 
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Table 4: Rotor Whirl Frequency Pairs 
Bearing Stiffness = 50 lbs/in, Bearing Damping = 1.5x10 2 lbs-sec/in 

Mode Rotor Whirl Frequency Pairs (Hz) 
Rigid Body 42.1 , 67.21 

Backward Forward2 

1 268.9 272.5 
2 779.7 802.0 
3 1,531 1,590 

Note: The original FEM program predicted two rigid body modes (conical and bounce) 

and gave their uncoupled values. In reality, the two rigid body modes are actually 

coupled. This coupling typically results in only one noticeable rigid body mode (a 

combination of both conical and bounce modes), [19]. 

After the whirl speed analysis was complete, the original FEM program 

(Antkowiak) generated state space matrices for the rotor model. The bode plot of the 

free-free rotor model is given in Figure 37. It shows the first critical speed at 

approximately 1700 rad/sec or 270 Hz, which is consistent with Table 3. 
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Figure 37: Bode Plot of Free-Free Rotor Model 
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Prior to entering the rotor model into the simulation, the root loci of the free-free 

rotor model was plotted. A root locus plot illustrates how the closed loop poles and zeros 

of a system change as the gain is varied. Although proportional gain is a simple choice 

for a controller, it gives a quick look at the system stability, gives insight on possible 

controller designs, and illustrates the complexity of the dynamic model. 

Figure 38 shows the how the root loci change as the rotation speed changes. Note 

that due to the scale of the plots, the root loci lines between the poles (zero gain) and the 

zeros (infinite gain) are not visible. At zero rotational speed, all of the poles and zeros 

are located on the imaginary axis. As the rotation speed increases, the poles and zeros 

move in a curved path toward the negative real axis. Once aligned with the real axis, 

some begin to migrate towards negative infinity and some approach (but never reach) the 

origin. Since the poles of this system never cross into the right half plane, the system 

should be stable for all rotation speeds. In addition, since the zeros of the system never 

enter the right half-plane, it indicates that a simple controller might be sufficient to 

control the system, [20]. 
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Figure 38: Root Loci of Free-Free Rotor Model as Rotation Speed Increases 
(No Internal or External Damping) 
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6.2 Magnetic Bearing Simulation Results 

Using the calculated state-space matrices from the original FEM model 

(Antkowiak), the magnetic bearing simulation (Schölten) predicted the critical speeds and 

rigid body modes for the rotor. Figure 39 shows the simulated response of the rotor to a 

0 to 325 Hz ramp in one second. The top time history plot shows the displacement of the 

rotor at bearing one (located next to the elastic coupling) in both the vertical and 

horizontal axes. The second time history shows the displacement of the rotor at bearing 

two. Underneath the time histories, additional plots are provided to show the radial shaft 

orbit during the simulated test run. The dashed lines in the orbit plots represent the 

touchdown bearings (8 mil air gap). In general, the results of Figure 39 indicate that the 

PID controller can successfully control the rotor as it passes through the first critical 

speed (occurring at approximately 0.92 seconds or 290 Hz) without contacting the 

touchdown bearings. This also confirms the assumption based on the root loci plots 

(Figure 38) that a simple controller would be sufficient to control this system. 
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Figure 39: Simulation Prediction of Rotor Response during a 0 - 325 Hz Ramp 

To get a better insight on the closed loop control of the plant, a number of plots 

were generated using frequency domain based tools developed at Draper Laboratory. 

Figure 40 shows the frequency response of the rotor located at bearing number two 

(farthest away from the elastic coupling) in terms of magnitude (output/input ratio in dB) 

and phase (output - input in degrees) for a rotor speed of 150 Hz. This spin speed was 

chosen as a representative operating speed for the rotor due to motor speed limitations. 

The first response, A, shown is the plant model. For this case, the plant includes bearing 

one represented by a first order lag model. The second response, B, shows the controller 

response, which includes calculation and zero-order-hold delays. The final pair of plots, 

C, shows the open loop (without feedback) response of the plant and the controller 

combined. Phase is positive from approximately 40 to 300 Hz indicating the frequency 

band where damping occurs, [22]. 
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Figure 40: (A) Plant Response, (B) Controller Response, (C) Plant and 
Controller Combined (Open-Loop) Response for a Rotor Spin Speed of 150 Hz 

Figure 41 is a Nichols plot of the magnitude versus the phase from the open-loop 

plant and controller combined case shown in Figure 40. The rotor speed is 150 Hz. The 

'X' indicates the operating point of the control law relative to the complex structure of 

the rotordynamics. The distance of the 'X' from the line gives the gain margin as 15 dB 

and the phase margin as 30 degrees. These adequate margins indicate that the controller 

will be reliably stable, with a damped response to disturbances, [21]. 
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Figure 41: Open Loop Gain vs. Phase at 150 Hz 

Figure 42 presents the open and closed loop frequency response of the controlled 

bearing furthest away from the motor (bearing 2). The dashed line corresponds to the 

uncontrolled rotor (combined plant and controller response of Figures 40 and 41) and the 

solid line shows the controlled rotor. The difference between the two represents the 

action of the magnetic bearings upon the rotor. At lower frequencies the effect is large 

because the bearings can tightly constrain the rotor. At high frequencies the effect is 

minimal due to the inherent difficult of moving the rotor since the displacement is 

proportional to force/frequency2, [21]. In addition, these higher frequencies are beyond 

the actuator bandwidth. The critical speed for the closed loop system shown in this figure 

is 289 Hz, which is close to the value estimated from Figure 39. 
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Plant and Controller Combined Open/Closed-Loop FRF: [PID kp=.05 ki=3.00 kd=0.002 pdhz=1000] Gain = 1 
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Figure 42: Open and Closed Loop Frequency Response, 150 Hz 

To find the rigid body modes predicted by the simulation, a Power Spectral 

Density plot of the rotor system, at a constant speed of 148 Hz, was produced. Similar to 

a Bode plot, a PSD takes the all of the modes acting on the system and plots them as a 

function of frequency. Figure 43 shows the dominate mode of 148 Hz (related to the 

rotor spin speed) and small peak occurring at 289 Hz (critical speed). Although there is 

not a distinct peak, the relative maximum of the curve gives a rigid body mode estimate 

of 47 Hz. A comparison of the FEM model predictions to the closed loop simulation is 

given in Table 5. 
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Figure 43: PSD of Simulation at Constant Rotor Spin Speed of 148 Hz 

Table 5: Comparison of Original FEM Model to Original Simulation 
FEM Model: Bearing Stiffness = 50 lbs/in, Bearing Damping = 1.5xl0"2 lbs-sec/in 

Simulation: KP = 0.05 lb/mil, Kr = 3.00 lb/mil-s, KD = 0.002 lb-sec/mil, 
Derivative Bandwidth = 1000 Hz 

Mode FEM 
Prediction 

Simulation 

Rigid Body Mode 42.1,67.2* 47 
1st Critical Speed 272.5 289 

* Rigid body modes are uncoupled. 

6.3 Actual Rotor Testing and Comparison to Simulation 

To determine the accuracy of the FEM model and the Matlab™ magnetic bearing 

simulation, several test runs were made on a rotor test apparatus located at Draper 

Laboratory. Appendix A details the data acquisition rate and other important information 

regarding actual rotor testing. 
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Figures 44 and 45 show two representative simulation predictions compared to 

actual rotor rig test data. For each pair of plots, the simulation predictions are located on 

the left and the actual rotor test runs on shown on the right. All cases were run at a 

constant rotation speed and all displacements were measured in mils from the bearing 

centerline. Figures 44 and 45 show good agreement in terms of the predicted and actual 

displacements for bearing number 2, although the simulation predicted somewhat lower 

displacements for the bearing near the elastic coupling. This suggests that more work 

needs to be done on the elastic coupling block of the simulation. In terms of the vertical 

displacements at the bearings, the simulation had good correlation to the actual rotor data, 

while the predicted horizontal displacements were slightly smaller than the actual rotor 

data. 
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Figure 44: Predicted and Actual Rotor Displacements, 102 Hz 
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Figure 45: Predicted and Actual Rotor Displacements, 148 Hz 

The only area where the simulation had poor accuracy with regard to the actual 

rotor displacements was in the speed range near the rigid body mode. Since the 

simulation predicted the rigid body mode at 47 Hz, its displacement predictions at the 

actual rigid body mode of 52 Hz would not be as large. This is shown in Figure 46 with 

the simulation prediction on the left and the actual rotor data on the right. 
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Figure 46: Predicted and Actual Rotor Displacements, 52 Hz 
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A more important measure of the simulation was its ability to predict the location 

of the rigid body modes and the critical speeds. With regard to the first critical speed, the 

actual rotor could not be subjected to a ramp from 0 to 325 Hz in one second (like the 

simulation). In addition, hardware limitations prevented the rotor from achieving speeds 

greater than 200 Hz. Therefore, to determine the first critical speed and get another 

estimate of the rigid body mode, a PSD plot was made from actual rotor data at 148 Hz. 

Figure 47 shows the dominate mode of 148 Hz (related to the rotor spin speed), a peak at 

52 Hz (rigid body mode) and a small peak occurring at 295 Hz (critical speed). 
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Figure 47: PSD of Actual Rotor at Constant Rotor Spin Speed of 148 Hz 

Table 6 presents a summary of the results for the FEM rotor model, the 

simulation, and the actual rotor data. The FEM critical speed prediction was slightly 

lower than the actual rotor rig critical speed. This was probably due to the simplicity of 

the FEM model. This model did not take into account rotor unbalance, it assumed that 

the bearing and properties were constant, and it did not model any other overall system 

effects such as magnetic bearing material non-linearity, actuator lag, etc. (Note: Since the 
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FEM produced uncoupled rigid body modes, they could not be directly compared to the 

actual rotor rig data.) 

Table 6: Comparison of Original FEM, Modified Simulation and Actual Rotor Rig 
Data, FEM Model: Bearing Stiffness = 50 lbs/in, Bearing Damping = 

1.5xl0"2 lbs-sec/in, Simulation: KP = 0.05 lb/mil, Ki = 3.00 lb/mil-s, 
KD = 0.002 lb-sec/mil, Derivative Bandwidth = 1000 Hz 

Mode FEM 
Prediction 

Simulation 
Prediction 

Actual Rotor 
Rig Data 

Rigid Body Mode 42.1,67.2 47 52 
1st Critical Speed 272.5 289 295* 

* Indicates condition not tested. 

In contrast to the simple FEM, the high fidelity simulation (originally by Schölten 

with slight modifications described in Chapter 5) predicted a first critical speed that 

closely matched the actual rotor test data, although the rigid body mode predictions were 

not as accurate. With regard to the displacements predicted by the simulation, good 

agreement was seen in terms of the predicted and actual displacements for bearing 

number 2, although the modified simulation predicted somewhat lower displacements for 

the bearing near the elastic coupling. This suggests that more work needs to be done on 

the elastic coupling block of the simulation. In terms of the vertical displacements at the 

bearings, the modified simulation had good correlation to the actual rotor data, while the 

predicted horizontal displacements were slightly smaller than the actual rotor data. The 

only area where the simulation had poor accuracy with regard to the actual rotor 

displacements was in the speed range near the rigid body mode. Since the simulation 

predicted the rigid body mode at 47 Hz, its displacement predictions at the actual rigid 

body mode of 52 Hz would not be as large. 
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Chapter 7 Modeling and Simulation Predictions for a Rotor with Internal Damping 

7.1 FEM Modeling 

The same rotor at Draper Laboratory was again modeled using the extended FEM 

program. But for these cases, a number of different combinations of internal damping 

was included in the rotor. First, internal viscous damping (rjv = 2x10") was included. 

Next, only internal hysteretic damping (T|H = 2x10~4) was included in the rotor. Finally, 

both internal hysteretic and viscous damping were added to the rotor. 

The actual amounts of internal damping that were included in the rotor were 

estimated based on references, [2, 10, and 11]. Even though the actual amount of internal 

damping in the rotor remains unknown, these estimated values are still useful to show 

how the simulation (Schölten) and controller would react to the destabilizing effects of 

internal damping in general. 

An important part of the FEM analysis was determining the stiffness and damping 

characteristics of the bearings. Although magnetic bearings were able to change their 

stiffness and damping depending on the position of the shaft, the FEM program required 

constant values for its calculations. In an attempt to model the bearings, the stiffness and 

damping was assumed to be 50 lbs/in and 1.5xl0"2 lbs-sec/in respectively. These were 

based upon the maximum stiffness and damping that the controller could provide. More 

specifically, they were taken directly from the proportional and derivative constants of 

the PID controller (in units of lb/mil and lb-s/mil, respectively) with the time delays and 

system lags taken into account. The FEM calculated whirl frequency pairs and estimates 
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of the instability thresholds for the various combination of internal damping are given in 

Table 7. The critical speed for the first mode is in bold text. 

Table 7: FEM Predicted Rotor Instability Thresholds 
Bearing Stiffness = 50 lbs/in, Bearing Damping = 1.5xl0"2 lbs-sec/in 

Internal Damping FEM Whirl Frequencies 
(Hz) 

Instability Threshold 
(Hz) 

Backward Forward 
Tlv = 2xl0-6 268.9 272.5* 441 
T1H = 2X10"

4 268.9 272.5* Stable for all Speeds 
Tiv = 2xl0-6, Tin = 2xl0-4 268.9 272.5* 425 
* Critical speed 

After the whirl speed analysis was complete, the FEM program generated state 

space matrices for the three rotor models. The bode plots of the free-free rotor models 

(without external damping or stiffness) are given in Figures 48-50. All plots show the 

same values for the first critical speed at approximately 1700 rad/sec or 270 Hz, which is 

consistent with Table 7. In addition, all plots show the erratic tendencies of the phase as 

the frequency is increased. This could be a result of adding internal damping to the 

system, and needs further investigation. 
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Figure 48: Bode Plot of Free-Free Rotor Model at 250 Hz 
with Internal Viscous Damping T|v = 2xl0'6 
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Figure 49: Bode Plot of Free-Free Rotor Model at 250 Hz 
with Internal Hysteretic Damping T|H = 2xl0"4 
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Figure 50: Bode Plot of Free-Free Rotor Model at 250 Hz, with 
Internal Viscous Damping TJV = 2xl0'6, Internal Hysteretic Damping r|H = 2x10 -4 

Prior to entering the rotor model, into the modified simulation, the root loci of the 

free-free rotor models were plotted. Figure 51 shows the how the root loci of the rotor 

with internal viscous damping change as the rotation speed changes. At zero rotational 

speed, a few poles and zeros are located at the origin, with the rest in the stable left half 

plane. As the rotation speed increases, the two pairs of poles and zeros begin to migrate 

toward the imaginary axes. Between 250 and 300 Hz the pairs actually cross over into 
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the unstable region. This crossover occurs at the critical speed of the free-free rotor. 

This is consistent with the general characteristics of internal viscous damping (see the 

discussion in Chapter 3). Since the poles and zeros of this rotor do cross over into the 

right half plane, this indicates that a rotor with internal viscous damping might be 

difficult to control at speeds above its critical speed, [20]. 
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Figure 51: Root Loci of Free-Free Rotor Model as Rotation Speed Increases 
M (Internal Viscous Damping T|v = 2x10 ) 

Figure 52 shows the how the root loci of the rotor with internal hysteretic 

damping change as the rotation speed changes. For all rotational speeds, a pair of poles is 

located in the left and right half planes. This indicates that the free-free rotor will be 
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unstable for all speeds. These results are consistent with the general characteristics of 

internal hysteretic damping (see the discussion in Chapter 3). As the rotation speed 

increases, the two pairs of zeros begin to migrate toward the poles. Since this system has 

poles and zeros located in the right half plane, this indicates that a rotor with internal 

hysteretic damping might be difficult to control at all speeds, [20]. 
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Figure 52: Root Loci of Free-Free Rotor Model as Rotation Speed Increases 
(Internal Hysteretic Damping T|H = 2xl0'4) 

Figure 53 shows the how the root loci of the rotor with internal viscous and 

hysteretic damping change as the rotation speed changes. In general, the trend is very 

similar to Figure 51 (internal viscous damping only), where the poles and zeros migrate 

toward and cross into the unstable region. The difference lies in that the system can be 
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unstable at all speeds depending on the value of the gain. This is most apparent in the top 

left-hand corner of Figure 53 (rotor spin speed of 1 Hz). Similar to the internal viscous 

damping only case, these results indicate that a rotor with both internal viscous and 

hysteretic damping might also be difficult to control at speeds above its critical speed, 

[20]. 

Although it may appear odd that this free-free rotor (without external damping) 

can be stable even though it has internal hysteretic damping, one must recall the 

importance Figure 16 from Chapter 3 or the stabilizing term, J]v[K]{q}, from equation 

(72). The figure shows that the particular direction of the internal viscous damping force 

depends on the sign of the (Q-co). For this particular rotor, the internal hysteretic 

damping was in the same direction as the rotor whirl and the internal viscous damping 

was in the opposite direction. So, for speeds below the critical speed of the system, the 

stabilizing effects of internal viscous damping counteracted the destabilizing effects of 

the internal hysteretic damping. 
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7.2 Magnetic Bearing Simulation Predictions (Internal Damping Included) 

Using the calculated state-space matrices from the extended FEM model, the 

simulation attempted to predict the instability thresholds for the various combinations of 

internal damping. Figure 54 shows the simulated response of the rotor with internal 

viscous damping during a 0 to 400 Hz ramp in one second. At the closed-loop system's 

critical speed of 289 Hz (approximately 0.72 seconds) the rotor becomes unstable. This 

instability threshold is well below the FEM predicted speed of 441 Hz found in Table 7. 

sim4i.  Rotor 4, viscous internal damping, 0-400 Hz Ramp.   25-Mar-99 
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Figure 54: Simulation Prediction of Rotor Response during a 0 - 400 Hz Ramp, 
Internal Viscous Damping r|v = 2xl0"6 

To get a better insight on the closed loop control of the plant, a number of plots 

were generated using frequency domain based tools developed at Draper Laboratory. 

Figure 55 shows the frequency response of the rotor located at bearing number two in 

terms of magnitude (output/input ratio in dB) and phase (output - input in degrees) for a 
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rotor speed of 250 Hz. The first response, A, shown is the plant model. For this case, the 

plant includes bearing one represented by a first order lag model. The second response, 

B, shows the controller response. The final pair of plots, C, shows the open loop (without 

feedback) response of the plant and the controller combined. Similar to the bode plot in 

Figure 48, note the sudden phase angle changes for both the plant and for the combined 

open loop plant and controller. 
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Figure 55: (A) Plant Response, (B) Controller Response, (C) Plant and 
Controller Combined (Open-Loop) Response for a Rotor Spin Speed of 250 Hz, 

Internal Viscous Damping r\\ = 2xl0"6 

A number of different PID controllers were tested in an attempt to stabilize the 

rotor above its critical speed. These efforts focused on controller design in the frequency 

domain with subsequent testing in the full simulation. Increasing (or decreasing) the 

proportional, integral, and derivative constants had little effect on the stability of the 

system. 
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In a sense, the PID controller was "boxed in" by the complex rotordynamics. 

This is shown best by the Nichols plot in Figure 56. The smallest gain and phase margins 

for the controller are 11 dB and 5 degrees. Although the open loop system is stable at 

this spin speed (250 Hz), these margins will decrease even further as the rotor spin speed 

increases, leading to instability. 

-400        -300 -200 
Phase [deg] 

Figure 56: Open Loop Gain vs. Phase at 250 Hz, 
Internal Viscous Damping r|v = 2xl0"6 

Figure 57 presents the open and closed loop frequency response of the controlled 

bearing furthest away from the motor. The dashed line corresponds to the uncontrolled 

rotor (open loop plant and controller response combined from Figures 55 and 56) and the 

solid line shows the controlled rotor. The difference between the two represents the 

action of the magnetic bearings upon the rotor. Again, note the sudden phase angle 

changes. 
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Plant and Controller Combined Open/Closed-Loop FRF: [PID kp=.05 ki=3.00 kd=0.002 pdhz=1000] Gain = 1 
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Figure 57: Open and Closed Loop Frequency Response at 250 Hz, 
Internal Viscous Damping T|v = 2x10 •6 

Based on the results from Figures 54-57, and based on the earlier results of the 

root loci plots (Figure 51) it appears that a PID controller is not sufficient to control a 

rotor with internal viscous damping above its critical speed. 

If only internal hysteretic damping was included in the shaft, the simulation 

remained stable for all spin speeds tested. Figure 58 shows the simulated response of the 

rotor during a 0 to 400 Hz ramp in one second. This figure agrees with the FEM results 

(Table 7) and also is consistent with the characteristics of a system with internal 

hysteretic damping. In this case, it appears that the external damping provided by the 

magnetic bearings was sufficient to overcome the amount of internal hysteretic damping 

in this speed range. 
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Figure 58: Simulation Prediction of Rotor Response during a 0 - 400 Hz Ramp 
Internal Hysteretic Damping TIH = 2X10"4 

Figure 59 shows the frequency response of the rotor located at bearing number 

two in terms of magnitude and phase for a rotor speed of 250 Hz. The first response 

shown is the plant.  The second plots show the controller response while the final plots 

shows the plant and controller combined response. 
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Figure 59: (A) Plant Response, (B) Controller Response, (C) Plant and 
Controller Combined (Open-Loop) Response for a Rotor Spin Speed of 250 Hz 
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Figure 60 plots the magnitude versus phase from the open loop plant and 

controller combined case shown in Figure 59. This plot indicates that the combined open 

loop system is unstable at this speed, and is consistent with the root loci plots in Figure 

52. 
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Figure 60: Open Loop Gain vs. Phase at 250 Hz, 
Internal Hysteretic Damping T|H = 2xl0"4 

Figure 61 presents the open and closed loop frequency response of the controlled 

bearing furthest away from the motor. The dashed line corresponds to the uncontrolled 

rotor (open loop plant and controller response combined from Figures 59 and 60) and the 

solid line shows the controlled rotor. 
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Plant and Controller Combined Open/Closed-Loop FRF: [PID kp=.05 ki=3.00 kd=0.002 pdhz=1000] Gain = 1 
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Figure 61: Open and Closed Loop Frequency Response at 250 Hz, 
Internal Hysteretic Damping T|H = 2X10"4 

Although the results from Figures 58-61 indicate that a PID controller can maintain 

stability for the speed range tested, in reality the inherent limitations of a PID controller 

will eventually cause the rotor to become unstable. Eventually as the speed increases, the 

PID controller will have to lower its gain (including lowering the amount of external 

damping applied to the system). During this "roll off' period, the amount of external 

damping will fall below the amount of internal hysteretic damping and will cause the 

rotor to become unstable, [21]. 

When internal viscous and hysteretic damping was added to the shaft, the simulation 

predicted that the rotor would be stable below its closed loop critical speed of 289 Hz. 

Similar to the internal viscous damping case, this instability threshold is well below the 

FEM predicted speed of 422 Hz found in Table 7. Figure 62 shows the simulated 

response of the rotor during a 0 to 400 Hz ramp in one second. 
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Figure 62: Simulation Prediction of Rotor Response during a 0 - 400 Hz Ramp, 
Internal Viscous Damping r\\ = 2xl0'6, Internal Hysteretic Damping T|H = 2xl0"4 

Figure 63 shows the frequency response of the rotor located at bearing number 

two in terms of magnitude and phase for a rotor speed of 250 Hz. The first response 

shown is the plant. The second pair of plots show the controller response while the final 

pair show the plant and controller combined response. Note the similarities in the phase 

angle to Figure 55 (internal viscous damping only). 
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Figure 63: (A) Plant Response, (B) Controller Response, (C) Plant and Controller 
Combined (Open-Loop) Response for a Rotor Spin Speed of 250 Hz, 

Internal Hysteretic Damping T)H = 2xl0"4, Internal Viscous Damping T|v = 2xl0'6 

Again, a number of different PID controllers were tested in an attempt to stabilize the 

rotor above its critical speed. Increasing (or decreasing) the proportional, integral, and 

derivative constants had little effect on the stability of the system. The Nichols plot in 

Figure 64 shows how the PID controller was limited by the complex rotordynamics. The 

gain and phase margins for the controller are 11 dB and 5 degrees. Although the open 

loop system is stable at this spin speed (250 Hz), these margins will decrease even further 

as the rotor spin speed increases, leading to instability. 
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Figure 64: Open Loop Gain vs. Phase at 250 Hz, Internal Hysteretic Damping 
T|H = 2xl0'4, Internal Viscous Damping r|v = 2xl0"6 

Figure 65 presents the open and closed loop frequency response of the controlled 

bearing furthest away from the motor. The dashed line corresponds to the uncontrolled 

rotor (open loop plant and controller response combined case from Figures 63 and 64) 

and the solid line shows the controlled rotor. 

Plant and Controller Combined Open/Closed-Loop FRF: [PID kp=.05 ki=3.00 kd=0.002 pdhz=1000] Gain = 1 
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Figure 65: Open and Closed Loop Frequency Response, Internal Hysteretic 
Damping T)H = 2X10"4, Internal Viscous Damping r|v = 2xl0"6 
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Based on the results from Figures 63-65, and based on the earlier results of the 

root loci plots (Figure 51) it appears that a PID controller is not sufficient to control a 

rotor with internal viscous and hysteretic damping above its critical speed. 

Again, it is important to point out how similar these results are to the case with 

only internal viscous damping. This tends to suggest that the stabilizing effects of 

internal viscous damping at speeds below its critical speed was sufficient to overcome the 

destabilizing effects of the internal hysteretic damping in the rotor. This is consistent 

with the root loci plots in Figure 53, the stabilizing term in equation (72), and is also 

shown in Figure 16. 

To summarize, several PID controllers were designed and implemented in an 

effort to stabilize a rotor system with internal damping. These efforts focused on 

controller design in the frequency domain with subsequent testing in the full simulation. 

For the cases with internal viscous damping, the PID controller was able to maintain 

stability for sub-critical speeds only. For the internal hysteretic damping case, the PID 

controller was able to maintain control for all speeds tested, although in reality the 

inherent limitations of a PID controller will eventually cause the rotor to become 

unstable. Table 8 compares the simulation and FEM results for all cases of internal 

damping. 

Although PID controllers were effective in stabilizing the rotor systems at sub- 

critical speeds, the model developed during this thesis showed that these controllers were 

unable to counteract the destabilizing effects of internal damping during supercritical 

operation. Other more complex controllers should be designed specifically to achieve 

improved control and increase the instability threshold for the system. 
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Other important findings regarding internal damping include: 

- The erratic changes in the phase angle for systems with internal damping could be 

a factor in determining the stability of the system. Further study should be 

performed to determine specifically how the phase angle and internal damping are 

related. 

- The results of the rotor with internal viscous damping were very similar to the 

results of the case where both internal viscous and hysteretic damping were 

included. This tends to suggest that the stabilizing effects of internal viscous 

damping at speeds below its critical speed was sufficient to overcome the 

destabilizing effects of the internal hysteretic damping in the rotor. 

Table 8: Comparison of Instability Threshold Predictions 
FEM Model: Bearing Stiffness = 50 lbs/in, Bearing Damping = 1.5xl0'2 lbs-sec/in 

Simulation: KP = 0.05 lb/mil, Ki = 3.00 lb/mil-s, KD = 0.002 lb-sec/mil, 
Derivative Bandwidth = 1000 Hz 

Internal Damping Critical Speeds (Hz) Instability Threshold (Hz) 
FEM1 Simulation2 FEM1 Simulation 

T|v = 2xl0-6 272.5 289 441 289 
Tin = 0.0002 272.5 289 Stable for 

all Speeds 
Stable for all 

Speeds 
rjv =2X10"

6
,T|H =0.0002 272.5 289 425 289 

1 Extended FEM model has constant bearing properties 
Modified Simulation 
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Chapter 8 Summary and Conclusions 

In the first few chapters of this thesis the concepts of external and internal 

damping were explored. Internal damping was defined and divided into two distinct 

types: internal viscous and internal hysteretic damping. Next, internal damping was 

included in a rotating system and it was shown how under certain conditions, internal 

damping can cause the rotor to become unstable. The following general conclusions 

regarding internal and external damping and their effects on stability were made: 

- If the external and internal damping are both viscous in nature, then the rotor will 

always be stable in its sub-critical speed range. Stability can be extended into the 

supercritical regime by adding external damping according to the results obtained by 

Smith, equation (56). 

- If the external and internal damping are both hysteretic, the rotor will be unstable for 

all speeds unless the external damping is large enough to establish stability. In this 

case, the rotor will be stable for all speeds. 

- If the external damping is viscous and the internal damping is hysteretic, the rotor 

will be unstable in a range of speeds beginning at ß = 0+. As the external viscous 

damping increases, this speed range shrinks toward Q. = 0 until the external damping 

reaches a value that results in stability for all speeds, i.e. for Q. > 0. 

After the general characteristics of internal damping were discussed, a finite 

element model that included internal damping was developed and validated using a 

standard test case from the references. This model was then used to produce state space 

matrices that fully described a rotor with and without internal damping. To make use of 



these matrices, a Matlab™ magnetic bearing simulation developed by Draper Laboratory 

(Schölten) was modified to include internal damping. The modified simulation was able 

to predicted rigid body modes, critical speeds, rotor displacements and instability 

thresholds. 

Prior to entering the rotor model with internal damping into the simulation, the 

original FEM model (Antkowiak) and simulation (Schölten) predictions were compared 

to actual rotor test results. The FEM model critical speed prediction was slightly lower 

than the actual rotor rig critical speed. This was probably due to the simplicity of the 

FEM model since it did not take into account rotor unbalance and it did not model any 

other overall system effects such as magnetic bearing material non-linearity, actuator lag, 

etc. 

In contrast to the simple FEM model, the high fidelity simulation predicted a first 

critical speed that closely matched the actual rotor test data, although the rigid body mode 

predictions were not as accurate. With regard to the displacements predicted by the 

simulation, good agreement was seen in terms of the predicted and actual displacements 

for the bearing furthest away from the elastic coupling, although the simulation predicted 

somewhat lower displacements for the closer bearing. This suggests that more work 

needs to be done on the elastic coupling block of the simulation. In terms of the vertical 

displacements at the bearings, the simulation had good correlation to the actual rotor data, 

while the predicted horizontal displacements were slightly smaller than the actual rotor 

data. 

The only area where the simulation had poor accuracy with regard to the actual 

rotor displacements was in the speed range near the rigid body mode. Since the 
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Simulation predicted the rigid body mode at 47 Hz, its displacement predictions at the 

actual rigid body mode of 52 Hz would not be as large. 

After verifying the high fidelity simulation and incorporating the destabilizing 

effects of internal damping, several PK) controllers were designed and implemented in an 

effort to stabilize a rotor system with internal damping. These efforts focused on 

controller design in the frequency domain with subsequent testing in the full simulation. 

For the cases with internal viscous damping, the PID controller was able to maintain 

stability for sub-critical speeds only. For the internal hysteretic damping case, the PID 

controller was able to maintain control for all speeds tested, although in reality the 

inherent limitations of a PID controller will eventually cause the rotor to become unstable 

above its critical speed. Other important findings regarding internal damping and the PID 

controller included: 

- The erratic changes in the phase angle for systems with internal damping could be 

a factor in determining the stability of the system. Further study should be 

performed to determine specifically how the phase angle and internal damping are 

related. 

- The results of the rotor with internal viscous damping were very similar to the 

results of the case where both internal viscous and hysteretic damping were 

included. This tends to suggest that the stabilizing effects of internal viscous 

damping at speeds below its critical speed was sufficient to overcome the 

destabilizing effects of the internal hysteretic damping in the rotor. 
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To continue this study, a number of tasks should be undertaken. First, a proper 

measurement of the internal viscous and hysteretic damping of the shaft should be made. 

Next, a higher speed motor must be acquired to test where the rotor actually becomes 

unstable. Based on these actual rotor results, the internal damping models might need to 

be extended. In addition, instability threshold predictions of shaft with an additional 

inertia, such as a disc, should be compared to actual test data. This would lead to a more 

useful simulation, since it is more representative of real-world applications. A final 

suggestion for further study in the realm of magnetic bearings and controls should 

include testing whether centralized control, as opposed to the current decentralized 

control, could improve the system stability margin. 

The PID controllers were effective in stabilizing the rotor systems at sub-critical 

speeds. However, the model developed during this thesis showed that these controllers 

were unable to counteract the destabilizing effects of internal damping during 

supercritical operation. Other more complex controllers should be designed and tested 

specifically to achieve improved control and increase the instability threshold for the 

system. This improved rotordynamic model and magnetic bearing simulation is now 

available to test these designs in the supercritical regime. 
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Appendix A - Detailed Information on Draper Magnetic Bearing Test Apparatus 

Rubber        Magnetic 
Coupling       Bearing 1 

Motor 
\ o 

ZZX 

Touchdown Bearings 

Shaft 

Magnetic 
Bearing 2 

Base 

Figure Al: Draper Magnetic Bearing Test Rig 

Motor Base - 

The base structure for the test rig is from a Bently Nevada RK-3 rotor kit. 

This kit includes an electric motor mounted on a base plate that drives the shaft. The 

motor and controller have the capability to operate in the range of 0 to 10,000 rpm. The 

motor is connected to the shaft via an elastic coupling. 

Rotor - 

The rotating assembly is comprised of two actuator rotors designed by Draper 

Laboratory pressed onto a 3/8" diameter stainless steel shaft. The actuator is an 

aluminum spool surrounded by multiple magnetic material laminations and a ferrous iron 

ring, which is used as the sensor plate for the eddy current sensors. A threaded brass nut 

is used to secure the laminations to the spool. The iron rig is mounted with a shrink fit. 
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Magnetic Actuators- 

A four-pole hetro polar bearing design at Draper Laboratory was used on the rotor 

test rig. A frameless stator design was selected so that the stator laminations could easily 

be mounted in a common aluminum housing. A nominal radial air gap of 0.012" was 

selected. 

The lamination stack for the stator and rotor were made out of Carpenter Hiperco 

alloy 50 in 14 mil sheets. Hiperco50 is an iron-cobalt-vandium soft magnetic alloy. This 

alloy was advertised to have a saturation of 2 Tesla when heat-treated accordingly. 

The stator was designed to accommodate 120 turns of #20 gauge wire. To 

minimize thermal heating in the copper coil, a maximum current density of 5,000 

amps/in2 was used. For desirable operation in the linear range of the BH curve, less that 

1.74 tesla, and a bearing load capacity of 10 lbs, sized the cross sectional area of the pole 

to be 0.025 in2. This calculation dictated that a stack of 9 laminations (0.126 in thick by 

0.2 pole width) was used in the stator design, [21]. 

Touchdown Bearings- 

In case of excess shaft vibration or controller failure, touchdown bearings were 

provided to protect the stators of the magnetic bearings. They provided a radial clearance 

of 0.008" from the center of the bearing. 
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Computer hardware and software- 

The digital signal processing (DSP) hardware is based on a single Texas Instruments 

C40 DSP operating at 50 megahertz. Several PC-hosted circuit boards were used for 

processing, digital to analog conversion, and analog to digital conversions. All of these 

boards were manufactured by dSpace, inc. Along with their hardware, dSpace provided 

low-level support software libraries for running and monitoring the DSP. The magnetic 

bearing control software running on the DSP was written by Draper Laboratory in the C 

language (Schölten). For speed and calculation robustness, linear transfer functions were 

coded in assembly language as Z-transform biquad filters, (Schölten, [22]). The sample 

rate was 10 kHz. 

The DSP system was hosted on a Pentium PC. It provided support for the 

following: 

- Data logging, using Trace40 application from dSpace; 

- Analysis of logged data, using Draper developed software routines; 

System Simulation using the Matlab and Simulink Applications; 

- A custom user interface written in C which provided for monitoring the 

dSpace real time (Schölten). 
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Appendix B - A Timoshenko Rotor Element 

No Internal Damping 

In line with its work on magnetic bearings, The Charles Stark Draper Laboratory 

has produced a rotor dynamic finite element model that is based on Timoshenko beam 

theory. A Timoshenko rotor uses an element with 2 nodes and 8 Degrees of Freedom and 

uses third order shape functions to describe the bending of the element. All additional 

inertia are assumed to be rigid discs with lump mass properties and the bearings are 

assumed to be discrete and linear. The model includes rotary inertia, gyroscopic 

moments, and shear deformation effects (O).   Following the derivation described by 

Nelson [16, 17] the shape functions are: 
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The matrix [A] transforms the nodal displacement vector (V, W) into the rotor 

translational displacements (Vbend, Wbend), while the matrix [0] converts the 

displacements into the rotor cross-section center line translations (VShear, WShear)- 

(B.3a,b) 

From the rotor configuration shown in Figure Bl, the rotations B and T are defined as: 

[A]= "A, 0 0 A2 A3 0 0 A4" 

0 A. -A2 Ü 0 A3 -A4 ü J 
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(B.4) 

(B.5) 
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* Bearing Center Line 

Figure Bl: Rotor System Configuration, Nelson 

Using the Lagrangian approach, Nelson calculated the potential and kinetic 

energy of the rotating element. The rotor potential energy of the rotor was stored in two 

forms, bending deformation, and shear deformation (axial loads neglected): 

0 Z VYbend. 

v   r IV   i      ',i      [v"   V fv* T*        ^f        , 
bend 

\W, 
iz + 

bend , ÜH W. 
shear 

ßt 

shear > 

shear 

\W. 
(B.6) 

shear , 

where the shear deformation factor is given by K and the second derivative of the bending 

deformation in the y direction is represented by V^end. The rotor kinetic energy included 

Timoshenko effects of rotary inertia, shear deformation, and the gyroscopic energy: 

VI   IV 
dz '-IHH &MH3 If, 
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2ds-jlpQßtdz 
0 ^ 0 

Nelson, then proceeded to derive the following matrices: 

(B.7) 
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where the elements in the translational mass matrix are defined by: 

m1=156 + 249O + 1404>2 

m2=/2(4+7Ö+3.5Ö2) 
_— 2 

m3=/(22 + 38.50 + 17.5<D ) 

m4=54 + 126Ö> + 70Ö~2 

m5=Z(13 + 31.5Ö + 17.5Ö2) 

m6=/2(3 + 7Ö + 3.5Ö2) 

(B.9a,b,c,d,e,f) 
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where the elements in the rotational mass matrix are defined by: 

«j =36 

n2=/2(4 + 5O + 10<D~) 

n3=/(3-15Ö) 

n4=/2(l + 5Ö-5Ö2) 

(B.lla,b,c,d) 
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where the individual elements in the stiffness matrix are defined by: 
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0 

(B.14) 

where the individual element in the gyroscopic matrix are defined by: 

S,=36 

g2=(4 + 5$ + 10<Ü2)/ 

g3= (-3 + 150)1 
_nr2. 

(B.15a,b,c,d) 

g4=(-l-5* + 5*")Z" 

By the application of Hamilton's extended principle, and using the above matrices 

and energy and work functions, Nelson produced the following undamped matrix 

equations of motion: 
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([MmJ + [Mwt])iq}-Q[G]{q} + [Kbend]{q} = {f} (B.16) 

where: 

{q} - fixed frame physical coordinates 

{f} - fixed frame external forces 

Q - rotor spin speed 

The eigenvalues for the undamped equation of motion occur in conjugate pairs 

and are given by: Sj = ±iü)j, where the imaginary pair ±co represents the forward and 

backward whirl frequencies of the shaft. 

Addition of Internal Damping 

Based on the work of Zorzi and Nelson, [2], the previous derivation of the 

rotordynamic equations of motion can be modified to include the contributions of internal 

damping. Nelson used both of the internal viscous and hysteretic damping models 

discussed in the previous chapters. Adding this combination of internal damping terms 

into the constitutive relationship yields: 

CJX=E 

( 

I 1 + V 
Vv + 

VH 

n^ + TlH 
(B.17) 

Further, by defining the whirl radius as R and the shaft radius as r (see Figure Bl), the 

strain and strain rate are: 
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Again from Figure Bl, the internal bending moments Mz and My can be expressed as: 

My=j\\V + rsm(Qt)}Txdr(rd(Qt)) 
A 

Mz = j-\V + rcos(Qt)}jxdr(rd(Qt)) 
(B.19a,b) 

After substituting the modified constitutive relationship into the internal bending 

moments and performing the integrations, the moments can be expressed as: 

\MZ 
= EI 

I + VH 
f 

V1 + V 
1 + VH +T}VQ. 

1 + *1H 

1 + VH 

+7]vn 

V1 + 77//5 
\W 

> + EI 
.0    -//,. 

\v'\ 
\W'\      (B.20) 

b)= 
I   lH+vM 

V1 + ^ 

1 + VH 

1 + VH 

+T]vn 

JI+VH
7 

(B.21) 

Now placing the energy contributions from these moment equations into the 

appropriate kinetic or potential energy equations defined in section 4.1, gives: 

V=\-EI<Vbend 

W„. 

V, bend iz + 
rl 

W, 
\-KAG- 

bend bend   , 

//") T r // - 

f 1 V r  n   V 

shear 

W. shear . 

shear iz + 
W. shear 

(B.22) 

+ j±EIlVbend\     [n bend 

w, bend W, bend 
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\ß\    \ß\ -I« IMWfl l?h- 
+ jlp/pQ2Jz-J/pQ^+U;7v^ 

»■vT 
(B.23) 

bend 

W, fcenrf   . 

bend \dz 
W, bend 

Again using the Lagrangian approach, Nelson finally proceeds to derive the equation of 

motion for a Timoshenko shaft finite element with internal damping. This is given by: 

([Mtrans] + [Mrot]){q} + (7]v[K]-Q[G] + [Ce]m + 

{q) = {f} 
l + T1" ;[K] + (nva + -i2£=)[Kd,] 

V1 + 77* V? +ri 

(B.24) 

All of the instabilities of the system are characterized by the new skew-symmetric 

circulation stiffness matrix, [2]. It is given by: 

0 

-12 0 skew sym 

6/ 0 0 

iKcir ] - ~jT 
0 

0 

6/ 

-12 

-Al2 

61 

0 

0 0 

12 0 0 61 -12 0 

6/ 0 0 2l2 -61 0 0 

0 6/ -2l2 0 0 -61 -4/2 0 

(B.25) 

Solving the equations of motion with internal damping results in eigenvalues in 

the form of: 5 • = Aj ± iO)j, where co provides shaft whirl and X provides an orbit 

growth/decay after a perturbation. 

B-8 



Appendix C: Input Files for Draper Rotor FEM Program 

Input File for Rotor - No Internal Damping, No Constraints 

ELEMENT 1    3 0.500 0.3125 
ELEMENT 2    10.675 0.3748 
ELEMENT 3    10.675 0.3748 
ELEMENT 4   2 0.360 0.3748 
ELEMENT 5   2 0.500 0.3748 
ELEMENT 6   2 0.440 0.3748 
ELEMENT 7    1 1.000 0.3748 
ELEMENT 8    1 1.000 0.3748 
ELEMENT 9    1 1.000 0.3748 
ELEMENT 10    1 1.000 0.3748 
ELEMENT 11    1 1.000 0.3748 
ELEMENT 12    1 1.000 0.3748 
ELEMENT 13    1 1.000 0.3748 
ELEMENT 14    1 1.000 0.3748 
ELEMENT 15    1 1.000 0.3748 
ELEMENT 16   2 0.440 0.3748 
ELEMENT 17    2 0.500 0.3748 
ELEMENT 18   2 0.360 0.3748 
ELEMENT 19    10.625 0.3748 
ELEMENT 20    10.625 0.3748 
MATERIAL 1      29.5E+06    .33      7.27-04 
MATERIAL 2     69.3E+06    .33      8.40-04 
MATERIAL 3      10.0E+06    .45     7.50-04 
CONSTRAINT    1      000.0 000.0 
CONSTRAINT   5     0.000E+00 0.000E+00 
CONSTRAINT   6     0.000E+04 0.000E+04 
CONSTRAINT    8     0.000E+00 0.000E+00 
CONSTRAINT   11      0.000E+00 0.000E+00 
CONSTRAINT   15     0.000E+00 0.00ÖE+00 
CONSTRAINT   17     0.000E+04 0.000E+04 
CONSTRAINT   18     0.000E+00 0.000E+00 
CONSTRAINT  21      0.000E+00 0.000E+00 
ADDMASS 4     32.00E-06 1.500E-06 2.700E-06 
ADDMASS 5     68.00E-06 4.100E-06 5.800E-06 
ADDMASS 6     62.00E-06 3.600E-06 5.300E-06 
ADDMASS 7     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 16     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 17     62.00E-06 3.600E-06 5.300E-06 
ADDMASS 18      68.00E-06 4.100E-06 5.800E-06 
ADDMASS 19     32.00E-06 1.500E-06 2.700E-06 
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Input File for Rotor 
Bearing 

No Internal Damping, With Constraints from Estimated 

ELEMENT       1 
ELEMENT      2 
ELEMENT      3 
ELEMENT      4 
ELEMENT      5 
ELEMENT      6 
ELEMENT      7 
ELEMENT      8 
ELEMENT      9 
ELEMENT      10 
ELEMENT      11 
ELEMENT      12 
ELEMENT      13 
ELEMENT      14 
ELEMENT      15 
ELEMENT      16 
ELEMENT      17 
ELEMENT      18 
ELEMENT      19 
ELEMENT     20 
MATERIAL      1 
MATERIAL     2 
MATERIAL     3 
CONSTRAINT    1 
CONSTRAINT   5 
CONSTRAINT   6 
CONSTRAINT   8 
CONSTRAINT   11 
CONSTRAINT   15 
CONSTRAINT   17 
CONSTRAINT   18 
CONSTRAINT  21 
ADDMASS      4 
ADDMASS      5 
ADDMASS      6 
ADDMASS      7 
ADDMASS      16 
ADDMASS      17 
ADDMASS      18 
ADDMASS      19 

3 0.500 
1 0.675 
1 0.675 
2 0.360 
2 0.500 
2 0.440 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
1 1.000 
2 0.440 
2 0.500 
2 0.360 
1 0.625 
1 0.625 
29.5E+06 

0.3125 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 
0.3748 

33 7.27-04 
8.40-04 
7.50-04 

69.3E+06   .33 
10.0E+06    .45 

000.0    000.0 
0.000E+00 0.000E+00 
5.000E+01 5.000E+01  1.500E-02 1.500E-02 
0.000E+00 0.000E+00 
0.000E+00 0.000E+00 
0.000E+00 0.000E+00 
5.000E+01 5.000E+01  1.500E-02 1.500E-02 
0.000E+00 0.000E+00 
0.000E+00 0.000E+00 

32.00E-06 1.500E-06 2.700E-06 
68.00E-06 4.100E-06 5.800E-06 
62.00E-06 3.600E-06 5.300E-06 
26.00E-06 1.200E-06 2.200E-06 
26.00E-06 1.200E-06 2.200E-06 
62.00E-06 3.600E-06 5.300E-06 
68.00E-06 4.100E-06 5.800E-06 
32.00E-06 1.500E-06 2.700E-06 
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Input File for Rotor - Internal Damping Included, No Constraints 

ELEMENT 1    3 0.500 0.3125 
ELEMENT 2    10.675 0.3748 
ELEMENT 3    10.675 0.3748 
ELEMENT 4   2 0.360 0.3748 
ELEMENT 5   2 0.500 0.3748 
ELEMENT 6   2 0.440 0.3748 
ELEMENT 7    1 1.000 0.3748 
ELEMENT 8    1 1.000 0.3748 
ELEMENT 9    1 1.000 0.3748 
ELEMENT 10    1 1.000 0.3748 
ELEMENT 11    1 1.000 0.3748 
ELEMENT 12    1 1.000 0.3748 
ELEMENT 13    1 1.000 0.3748 
ELEMENT 14    1 1.000 0.3748 
ELEMENT 15    1 1.000 0.3748 
ELEMENT 16   2 0.440 0.3748 
ELEMENT 17    2 0.500 0.3748 
ELEMENT 18    2 0.360 0.3748 
ELEMENT 19    10.625 0.3748 
ELEMENT 20    10.625 0.3748 
MATERIAL 1      29.5E+06    .33     7.27-04  2.00E-04 2.00E-06 
MATERIAL 2     69.3E+06    .33      8.40-04  2.00E-04 2.00E-06 
MATERIAL 3      10.0E+06    .45      7.50-04 
CONSTRAINT    1      000.0 000.0 
CONSTRAINT    5     0.000E+00 0.000E+00 
CONSTRAINT    6     0.000E+04 0.000E+04 
CONSTRAINT   8     0.000E+00 0.000E+00 
CONSTRAINT   11      0.000E+00 0.000E+00 
CONSTRAINT   15     0.000E+00 0.000E+00 
CONSTRAINT   17     0.000E+04 0.000E+04 
CONSTRAINT   18     0.000E+00 0.000E+00 
CONSTRAINT  21      0.000E+00 0.000E+00 
ADDMASS 4     32.00E-06 1.500E-06 2.700E-06 
ADDMASS 5     68.00E-06 4.100E-06 5.800E-06 
ADDMASS 6     62.00E-06 3.600E-06 5.300E-06 
ADDMASS 7     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 16     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 17      62.00E-06 3.600E-06 5.300E-06 
ADDMASS 18      68.00E-06 4.100E-06 5.800E-06 
ADDMASS 19     32.00E-06 1.500E-06 2.700E-06 
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Input File for Rotor - Internal Damping Included, With Constraints 

ELEMENT 1    3 0.500 0.3125 
ELEMENT 2    10.675 0.3748 
ELEMENT 3    10.675 0.3748 
ELEMENT 4   2 0.360 0.3748 
ELEMENT 5   2 0.500 0.3748 
ELEMENT 6   2 0.440 0.3748 
ELEMENT 7    1 1.000 0.3748 
ELEMENT 8    1 1.000 0.3748 
ELEMENT 9    1 1.000 0.3748 
ELEMENT 10    1 1.000 0.3748 
ELEMENT 11    11.000 0.3748 
ELEMENT 12    1 1.000 0.3748 
ELEMENT 13    1 1.000 0.3748 
ELEMENT 14    1 1.000 0.3748 
ELEMENT 15    1 1.000 0.3748 
ELEMENT 16   2 0.440 0.3748 
ELEMENT 17   2 0.500 0.3748 
ELEMENT 18    2 0.360 0.3748 
ELEMENT 19    10.625 0.3748 
ELEMENT 20    10.625 0.3748 
MATERIAL 1      29.5E+06    .33     7.27-04  2.00E-04 2.00E-06 
MATERIAL 2     69.3E+06    .33      8.40-04  2.00E-04 2.00E-06 
MATERIAL 3      10.0E+06    .45     7.50-04 
CONSTRAINT    1      000.0 000.0 
CONSTRAINT   5     0.000E+00 0.000E+00 
CONSTRAINT   6     5.000E+01 5.000E+01  1.500E-02 1.500E-02 
CONSTRAINT    8     0.000E+00 0.000E+00 
CONSTRAINT   11      0.000E+00 0.000E+00 
CONSTRAINT   15     0.000E+00 0.000E+00 
CONSTRAINT   17      5.000E+01 5.000E+01  1.500E-02 1.500E-02 
CONSTRAINT   18     0.000E+00 0.000E+00 
CONSTRAINT   21      0.000E+00 0.000E+00 
ADDMASS 4     32.00E-06 1.500E-06 2.700E-06 
ADDMASS 5      68.00E-06 4.100E-06 5.800E-06 
ADDMASS 6     62.00E-06 3.600E-06 5.300E-06 
ADDMASS 7     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 16     26.00E-06 1.200E-06 2.200E-06 
ADDMASS 17      62.00E-06 3.600E-06 5.300E-06 
ADDMASS 18      68.00E-06 4.100E-06 5.800E-06 
ADDMASS 19     32.00E-06 1.500E-06 2.700E-06 
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